M

E N E Pub Date : 1826-12-31 DOI:10.1515/9783110580051-044
Marco Pritoni, Drew Paine, Gabriel Fierro, Cory Mosiman, Michael Poplawski, A. Saha, Joel Bender, J. Granderson
{"title":"M","authors":"Marco Pritoni, Drew Paine, Gabriel Fierro, Cory Mosiman, Michael Poplawski, A. Saha, Joel Bender, J. Granderson","doi":"10.1515/9783110580051-044","DOIUrl":null,"url":null,"abstract":"Let A denote the set of ideal accessible boundary points of a simply connected domain. Recall that these are the finite radial limit points of the Riemann map from the unit disk onto and that each radius along which the limit exists gives a distinct ideal boundary point. In particular, distinct ideal accessible boundary points may have the same complex coordinate. Fix w0 ∈  and for eacha ∈ A andr < |w0 − a| let γ (a, r) ⊂ {z : |z − a| = r} be the circular crosscut of  separatinga fromw0 that can be joined toa by a Jordan arc contained in ∩ {z : |z− a| < r}. Throughout this paper we will refer to γ (a, r) as theprincipal separating arc for a of radiusr. LetL(a, r) denote the Euclidean length of γ (a, r) and let","PeriodicalId":87600,"journal":{"name":"E N E","volume":"51 1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"1826-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"E N E","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/9783110580051-044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let A denote the set of ideal accessible boundary points of a simply connected domain. Recall that these are the finite radial limit points of the Riemann map from the unit disk onto and that each radius along which the limit exists gives a distinct ideal boundary point. In particular, distinct ideal accessible boundary points may have the same complex coordinate. Fix w0 ∈  and for eacha ∈ A andr < |w0 − a| let γ (a, r) ⊂ {z : |z − a| = r} be the circular crosscut of  separatinga fromw0 that can be joined toa by a Jordan arc contained in ∩ {z : |z− a| < r}. Throughout this paper we will refer to γ (a, r) as theprincipal separating arc for a of radiusr. LetL(a, r) denote the Euclidean length of γ (a, r) and let
设A表示单连通域上理想可达边界点的集合。回想一下,这些是从单位圆盘到物体的黎曼映射的有限径向极限点,并且极限存在的每个半径都给出了一个不同的理想边界点。特别地,不同的理想可达边界点可能具有相同的复坐标。固定w0∈´,对于每个∈A和r < |w0 - A |,设γ (A, r)∧{z: |z - A | = r}是与w0分离的↓的圆形横切,该横切可以通过包含在↓∩{z: |z - A | < r}中的Jordan弧连接到A。在本文中,我们将把γ (a, r)作为a (radiusr)的主要分离弧。令l (a, r)表示γ (a, r)的欧氏长度,令
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信