{"title":"A 1-to-18GHz Distributed-Stacked-Complementary Triple-Balanced Passive Mixer With up to 33dBm IIP3 and Integrated LO Driver in 45nm CMOS SOI","authors":"C. Hill, J. Buckwalter","doi":"10.1109/ISSCC42614.2022.9731662","DOIUrl":null,"url":null,"abstract":"Massive MIMO or digital-beamforming transceiver systems, shown in Fig. 19.7.1, offer flexibility for multiband, multi-user, and joint communication-and-sensing platforms. However, wideband MIMO applications increase the number of desired or interfering signals that impinge on each channel, creating higher input-power-compression $(\\mathrm{P}_{1\\text{dB}})$ or 3rd-order input-intercept-point (IIP3) linearity requirements in both the transmitting and receiving RF paths. In high-performance commercial and defense radios, CMOS mixers place critical limitations on receiver linearity as the LNA output typically compresses the mixer, leading to recent work on mixer-first approaches in CMOS to improve receiver linearity [1]. When highly linear microwave mixers are demanded, IIIV processes, such as GaAs, are favored for Schottky diodes, which offer lower $\\mathrm{R}_{\\text{on}}\\mathrm{C}_{\\text{off}}$ and high barrier voltages. Commercially available GaAs mixers offer IIP3s exceeding 30dBm. However, III-V mixers typically use a separate process for the driver amplifier, resulting in multiple chips with high driver power consumption (typically exceeding 1W) to deliver the required 15-to-30dBm LO power across a broad LO frequency range [2].","PeriodicalId":6830,"journal":{"name":"2022 IEEE International Solid- State Circuits Conference (ISSCC)","volume":"60 1","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Solid- State Circuits Conference (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC42614.2022.9731662","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Massive MIMO or digital-beamforming transceiver systems, shown in Fig. 19.7.1, offer flexibility for multiband, multi-user, and joint communication-and-sensing platforms. However, wideband MIMO applications increase the number of desired or interfering signals that impinge on each channel, creating higher input-power-compression $(\mathrm{P}_{1\text{dB}})$ or 3rd-order input-intercept-point (IIP3) linearity requirements in both the transmitting and receiving RF paths. In high-performance commercial and defense radios, CMOS mixers place critical limitations on receiver linearity as the LNA output typically compresses the mixer, leading to recent work on mixer-first approaches in CMOS to improve receiver linearity [1]. When highly linear microwave mixers are demanded, IIIV processes, such as GaAs, are favored for Schottky diodes, which offer lower $\mathrm{R}_{\text{on}}\mathrm{C}_{\text{off}}$ and high barrier voltages. Commercially available GaAs mixers offer IIP3s exceeding 30dBm. However, III-V mixers typically use a separate process for the driver amplifier, resulting in multiple chips with high driver power consumption (typically exceeding 1W) to deliver the required 15-to-30dBm LO power across a broad LO frequency range [2].