On the question of a constructive controllability criterion. Pt I. Cyclic invariant subspaces

IF 0.3 Q4 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Elizaveta A. Kalinina, A. M. Kamachkin, N. Stepenko, G. Tamasyan
{"title":"On the question of a constructive controllability criterion. Pt I. Cyclic invariant subspaces","authors":"Elizaveta A. Kalinina, A. M. Kamachkin, N. Stepenko, G. Tamasyan","doi":"10.21638/11701/spbu10.2023.213","DOIUrl":null,"url":null,"abstract":"The rank of the Kalman’s controllability matrix of linear systems depends on the bases of the invariant cyclic subspaces of the state matrix generated by the columns of the input matrix. The case of the Jordan form of the state matrix and scalar control is studied in detail. It is shown that the dimension of cyclic subspaces is determined by the index numbers of the first non-zero elements of the coordinate blocks of the columns of the input matrix. The formation of the bases of these subspaces is completely disclosed. Based on this, the basis of the space of a constructive control system is constructed.","PeriodicalId":43738,"journal":{"name":"Vestnik Sankt-Peterburgskogo Universiteta Seriya 10 Prikladnaya Matematika Informatika Protsessy Upravleniya","volume":"10 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vestnik Sankt-Peterburgskogo Universiteta Seriya 10 Prikladnaya Matematika Informatika Protsessy Upravleniya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21638/11701/spbu10.2023.213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The rank of the Kalman’s controllability matrix of linear systems depends on the bases of the invariant cyclic subspaces of the state matrix generated by the columns of the input matrix. The case of the Jordan form of the state matrix and scalar control is studied in detail. It is shown that the dimension of cyclic subspaces is determined by the index numbers of the first non-zero elements of the coordinate blocks of the columns of the input matrix. The formation of the bases of these subspaces is completely disclosed. Based on this, the basis of the space of a constructive control system is constructed.
论构造可控性判据问题。1 .循环不变子空间
线性系统的卡尔曼可控性矩阵的秩取决于由输入矩阵的列生成的状态矩阵的不变循环子空间的基。详细研究了状态矩阵的约当形式和标量控制的情况。证明了循环子空间的维数是由输入矩阵列的坐标块的第一个非零元素的索引数决定的。这些子空间的基的形成完全公开。在此基础上,构建了构造控制系统的空间基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
50.00%
发文量
10
期刊介绍: The journal is the prime outlet for the findings of scientists from the Faculty of applied mathematics and control processes of St. Petersburg State University. It publishes original contributions in all areas of applied mathematics, computer science and control. Vestnik St. Petersburg University: Applied Mathematics. Computer Science. Control Processes features articles that cover the major areas of applied mathematics, computer science and control.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信