Time-space hardness of learning sparse parities

Gillat Kol, R. Raz, Avishay Tal
{"title":"Time-space hardness of learning sparse parities","authors":"Gillat Kol, R. Raz, Avishay Tal","doi":"10.1145/3055399.3055430","DOIUrl":null,"url":null,"abstract":"We define a concept class ℱ to be time-space hard (or memory-samples hard) if any learning algorithm for ℱ requires either a memory of size super-linear in n or a number of samples super-polynomial in n, where n is the length of one sample. A recent work shows that the class of all parity functions is time-space hard [Raz, FOCS'16]. Building on [Raz, FOCS'16], we show that the class of all sparse parities of Hamming weight ℓ is time-space hard, as long as ℓ ≥ ω(logn / loglogn). Consequently, linear-size DNF Formulas, linear-size Decision Trees and logarithmic-size Juntas are all time-space hard. Our result is more general and provides time-space lower bounds for learning any concept class of parity functions. We give applications of our results in the field of bounded-storage cryptography. For example, for every ωlogn) ≤ k ≤ n, we obtain an encryption scheme that requires a private key of length k, and time complexity of n per encryption/decryption of each bit, and is provably and unconditionally secure as long as the attacker uses at most o(nk) memory bits and the scheme is used at most 2o(k) times. Previously, this was known only for k=n [Raz, FOCS'16].","PeriodicalId":20615,"journal":{"name":"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing","volume":"59 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3055399.3055430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 48

Abstract

We define a concept class ℱ to be time-space hard (or memory-samples hard) if any learning algorithm for ℱ requires either a memory of size super-linear in n or a number of samples super-polynomial in n, where n is the length of one sample. A recent work shows that the class of all parity functions is time-space hard [Raz, FOCS'16]. Building on [Raz, FOCS'16], we show that the class of all sparse parities of Hamming weight ℓ is time-space hard, as long as ℓ ≥ ω(logn / loglogn). Consequently, linear-size DNF Formulas, linear-size Decision Trees and logarithmic-size Juntas are all time-space hard. Our result is more general and provides time-space lower bounds for learning any concept class of parity functions. We give applications of our results in the field of bounded-storage cryptography. For example, for every ωlogn) ≤ k ≤ n, we obtain an encryption scheme that requires a private key of length k, and time complexity of n per encryption/decryption of each bit, and is provably and unconditionally secure as long as the attacker uses at most o(nk) memory bits and the scheme is used at most 2o(k) times. Previously, this was known only for k=n [Raz, FOCS'16].
学习稀疏奇偶的时空硬度
我们定义一个概念类,如果任何一个学习算法需要n的超线性内存或n的超多项式样本数(其中n是一个样本的长度),那么它是时空难的(或内存-样本难的)。最近的一项研究表明,所有宇称函数的类都是时空难的[Raz, FOCS'16]。在[Raz, FOCS'16]的基础上,我们证明了只要r≥ω(logn / loglogn),所有Hamming权值r的稀疏奇偶都是时空难的。因此,线性大小的DNF公式,线性大小的决策树和对数大小的Juntas都是时空困难的。我们的结果更一般,并提供了学习任何奇偶函数概念类的时空下界。我们给出了我们的结果在有界存储密码学领域的应用。例如,对于每一个ωlogn)≤k≤n,我们得到了一个加密方案,它需要一个长度为k的私钥,并且每一个比特的加/解密的时间复杂度为n,只要攻击者使用最多o(nk)个内存位,并且该方案最多使用20 (k)次,该加密方案就可以证明是无条件安全的。以前,只有k=n才知道这一点[Raz, FOCS'16]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信