Automating instrumentation choices for performance problems in distributed applications with VAIF

Mert Toslali, E. Ates, Alex Ellis, Zhaoqing Zhang, Darby Huye, Lan Liu, Samantha Puterman, A. Coskun, Raja R. Sambasivan
{"title":"Automating instrumentation choices for performance problems in distributed applications with VAIF","authors":"Mert Toslali, E. Ates, Alex Ellis, Zhaoqing Zhang, Darby Huye, Lan Liu, Samantha Puterman, A. Coskun, Raja R. Sambasivan","doi":"10.1145/3472883.3487000","DOIUrl":null,"url":null,"abstract":"Developers use logs to diagnose performance problems in distributed applications. However, it is difficult to know a priori where logs are needed and what information in them is needed to help diagnose problems that may occur in the future. We present the Variance-driven Automated Instrumentation Framework (VAIF), which runs alongside distributed applications. In response to newly-observed performance problems, VAIF automatically searches the space of possible instrumentation choices to enable the logs needed to help diagnose them. To work, VAIF combines distributed tracing (an enhanced form of logging) with insights about how response-time variance can be decomposed on the critical-path portions of requests' traces. We evaluate VAIF by using it to localize performance problems in OpenStack and HDFS. We show that VAIF can localize problems related to slow code paths, resource contention, and problematic third-party code while enabling only 3-34% of the total tracing instrumentation.","PeriodicalId":91949,"journal":{"name":"Proceedings of the ... ACM Symposium on Cloud Computing [electronic resource] : SOCC ... ... SoCC (Conference)","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM Symposium on Cloud Computing [electronic resource] : SOCC ... ... SoCC (Conference)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3472883.3487000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Developers use logs to diagnose performance problems in distributed applications. However, it is difficult to know a priori where logs are needed and what information in them is needed to help diagnose problems that may occur in the future. We present the Variance-driven Automated Instrumentation Framework (VAIF), which runs alongside distributed applications. In response to newly-observed performance problems, VAIF automatically searches the space of possible instrumentation choices to enable the logs needed to help diagnose them. To work, VAIF combines distributed tracing (an enhanced form of logging) with insights about how response-time variance can be decomposed on the critical-path portions of requests' traces. We evaluate VAIF by using it to localize performance problems in OpenStack and HDFS. We show that VAIF can localize problems related to slow code paths, resource contention, and problematic third-party code while enabling only 3-34% of the total tracing instrumentation.
使用VAIF为分布式应用程序中的性能问题自动选择检测工具
开发人员使用日志来诊断分布式应用程序中的性能问题。然而,很难先验地知道哪些地方需要日志,以及需要其中的哪些信息来帮助诊断将来可能发生的问题。我们提出了方差驱动的自动化仪器框架(VAIF),它与分布式应用程序一起运行。为了响应新观察到的性能问题,VAIF会自动搜索可能的工具选择空间,以启用帮助诊断这些问题所需的日志。为了工作,VAIF将分布式跟踪(一种增强的日志记录形式)与如何在请求跟踪的关键路径部分分解响应时间方差的见解结合起来。我们通过使用VAIF来定位OpenStack和HDFS中的性能问题来评估VAIF。我们展示了VAIF可以定位与缓慢的代码路径、资源争用和有问题的第三方代码相关的问题,而只启用了总跟踪工具的3-34%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信