{"title":"Composing SDN Controller Enhancements with Mozart","authors":"Zhenyu Zhou, Theophilus A. Benson","doi":"10.1145/3357223.3362712","DOIUrl":null,"url":null,"abstract":"Over the last few years, we have experienced a massive transformation of the Software Defined Networking ecosystem with the development of SDNEnhancements, e.g., Statesman, ESPRES, Pane, and Pyretic, to provide better composability, better utilization of TCAM, consistent network updates, or congestion free updates. The end-result of this organic evolution is a disconnect between the SDN applications and the data-plane. A disconnect which can impact an SDN application's performance and efficacy. In this paper, we present the first systematic study of the interactions between SDNEnhancements and SDN applications -- we show that an SDN application's performance can be significantly impacted by these SDNEnhancements: for example, we observed that the efficiency of a traffic engineering SDN application was reduced by 24.8%. Motivated by these insights, we present, Mozart, a redesigned SDN controller centered around mitigating and reducing the impact of these SDNEnhancements. Using two prototypes interoperating with seven SDN applications and two SDNEnhancements, we demonstrate that our abstractions require minimal changes and can restore an SDN application's performance. We analyzed Mozart's scalability and overhead using large scale simulations of modern cloud networks and observed them to be negligible.","PeriodicalId":91949,"journal":{"name":"Proceedings of the ... ACM Symposium on Cloud Computing [electronic resource] : SOCC ... ... SoCC (Conference)","volume":"540 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM Symposium on Cloud Computing [electronic resource] : SOCC ... ... SoCC (Conference)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3357223.3362712","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Over the last few years, we have experienced a massive transformation of the Software Defined Networking ecosystem with the development of SDNEnhancements, e.g., Statesman, ESPRES, Pane, and Pyretic, to provide better composability, better utilization of TCAM, consistent network updates, or congestion free updates. The end-result of this organic evolution is a disconnect between the SDN applications and the data-plane. A disconnect which can impact an SDN application's performance and efficacy. In this paper, we present the first systematic study of the interactions between SDNEnhancements and SDN applications -- we show that an SDN application's performance can be significantly impacted by these SDNEnhancements: for example, we observed that the efficiency of a traffic engineering SDN application was reduced by 24.8%. Motivated by these insights, we present, Mozart, a redesigned SDN controller centered around mitigating and reducing the impact of these SDNEnhancements. Using two prototypes interoperating with seven SDN applications and two SDNEnhancements, we demonstrate that our abstractions require minimal changes and can restore an SDN application's performance. We analyzed Mozart's scalability and overhead using large scale simulations of modern cloud networks and observed them to be negligible.