A unified framework for optimal control of fractional in time subdiffusive semilinear PDEs

Harbir Antil, C. Gal, M. Warma
{"title":"A unified framework for optimal control of fractional in time subdiffusive semilinear PDEs","authors":"Harbir Antil, C. Gal, M. Warma","doi":"10.3934/dcdss.2022012","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>We consider optimal control of fractional in time (subdiffusive, i.e., for <inline-formula><tex-math id=\"M1\">\\begin{document}$ 0<\\gamma <1 $\\end{document}</tex-math></inline-formula>) semilinear parabolic PDEs associated with various notions of diffusion operators in an unifying fashion. Under general assumptions on the nonlinearity we <inline-formula><tex-math id=\"M2\">\\begin{document}$\\mathsf{first\\;show}$\\end{document}</tex-math></inline-formula> the existence and regularity of solutions to the forward and the associated <inline-formula><tex-math id=\"M3\">\\begin{document}$\\mathsf{backward\\;(adjoint)}$\\end{document}</tex-math></inline-formula> problems. In the second part, we prove existence of optimal <inline-formula><tex-math id=\"M4\">\\begin{document}$\\mathsf{controls }$\\end{document}</tex-math></inline-formula> and characterize the associated <inline-formula><tex-math id=\"M5\">\\begin{document}$\\mathsf{first\\;order}$\\end{document}</tex-math></inline-formula> optimality conditions. Several examples involving fractional in time (and some fractional in space diffusion) equations are described in detail. The most challenging obstacle we overcome is the failure of the semigroup property for the semilinear problem in any scaling of (frequency-domain) Hilbert spaces.</p>","PeriodicalId":11254,"journal":{"name":"Discrete & Continuous Dynamical Systems - S","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete & Continuous Dynamical Systems - S","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/dcdss.2022012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We consider optimal control of fractional in time (subdiffusive, i.e., for \begin{document}$ 0<\gamma <1 $\end{document}) semilinear parabolic PDEs associated with various notions of diffusion operators in an unifying fashion. Under general assumptions on the nonlinearity we \begin{document}$\mathsf{first\;show}$\end{document} the existence and regularity of solutions to the forward and the associated \begin{document}$\mathsf{backward\;(adjoint)}$\end{document} problems. In the second part, we prove existence of optimal \begin{document}$\mathsf{controls }$\end{document} and characterize the associated \begin{document}$\mathsf{first\;order}$\end{document} optimality conditions. Several examples involving fractional in time (and some fractional in space diffusion) equations are described in detail. The most challenging obstacle we overcome is the failure of the semigroup property for the semilinear problem in any scaling of (frequency-domain) Hilbert spaces.

分数阶次扩散半线性偏微分方程最优控制的统一框架
我们以统一的方式考虑与各种扩散算子概念相关的分数阶时间(次扩散,即,for \begin{document}$ 0)半线性抛物型偏微分方程的最优控制。在非线性的一般假设下,我们证明了正向问题和相关的$\mathsf{backward\;(伴随)}$\end{document}问题解的存在性和规律性。在第二部分,我们证明了最优\begin{document}$\mathsf{controls}$\end{document}的存在性,并描述了相关的\begin{document}$\mathsf{first\;order}$\end{document}最优性条件。详细描述了几个涉及分数阶时间(和一些分数阶空间扩散)方程的例子。我们克服的最具挑战性的障碍是半线性问题在任意标度(频域)Hilbert空间中的半群性质失效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信