A Poisson process model for Monte Carlo

Chris J. Maddison
{"title":"A Poisson process model for Monte Carlo","authors":"Chris J. Maddison","doi":"10.7551/mitpress/10761.003.0008","DOIUrl":null,"url":null,"abstract":"Simulating samples from arbitrary probability distributions is a major research program of statistical computing. Recent work has shown promise in an old idea, that sampling from a discrete distribution can be accomplished by perturbing and maximizing its mass function. Yet, it has not been clearly explained how this research project relates to more traditional ideas in the Monte Carlo literature. This chapter addresses that need by identifying a Poisson process model that unifies the perturbation and accept-reject views of Monte Carlo simulation. Many existing methods can be analyzed in this framework. The chapter reviews Poisson processes and defines a Poisson process model for Monte Carlo methods. This model is used to generalize the perturbation trick to infinite spaces by constructing Gumbel processes, random functions whose maxima are located at samples over infinite spaces. The model is also used to analyze A* sampling and OS*, two methods from distinct Monte Carlo families.","PeriodicalId":8446,"journal":{"name":"arXiv: Computation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7551/mitpress/10761.003.0008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Simulating samples from arbitrary probability distributions is a major research program of statistical computing. Recent work has shown promise in an old idea, that sampling from a discrete distribution can be accomplished by perturbing and maximizing its mass function. Yet, it has not been clearly explained how this research project relates to more traditional ideas in the Monte Carlo literature. This chapter addresses that need by identifying a Poisson process model that unifies the perturbation and accept-reject views of Monte Carlo simulation. Many existing methods can be analyzed in this framework. The chapter reviews Poisson processes and defines a Poisson process model for Monte Carlo methods. This model is used to generalize the perturbation trick to infinite spaces by constructing Gumbel processes, random functions whose maxima are located at samples over infinite spaces. The model is also used to analyze A* sampling and OS*, two methods from distinct Monte Carlo families.
蒙特卡罗泊松过程模型
从任意概率分布中模拟样本是统计计算的一个重要研究项目。最近的工作显示了一个古老的想法的希望,即从离散分布中采样可以通过扰动和最大化其质量函数来完成。然而,还没有清楚地解释这个研究项目是如何与蒙特卡洛文献中更传统的观点联系起来的。本章通过确定一个泊松过程模型来解决这个问题,该模型统一了蒙特卡罗模拟的摄动和接受-拒绝观点。许多现有的方法都可以在这个框架中进行分析。本章回顾了泊松过程,并为蒙特卡罗方法定义了泊松过程模型。该模型通过构造Gumbel过程将摄动技巧推广到无限空间,该随机函数的最大值位于无限空间上的样本处。该模型还用于分析A*抽样和OS*两种不同的蒙特卡罗族方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信