{"title":"Fuzzy techniques and hierarchical aggregation functions decision trees for the classification of epilepsy risk levels from EEG signals","authors":"R. Sukanesh, R. Harikumar","doi":"10.1109/TENCON.2008.4766545","DOIUrl":null,"url":null,"abstract":"The purpose of this paper is to identify the practicability of hierarchical soft (max-min) decision trees in optimization of fuzzy outputs in the classification of epilepsy risk levels from EEG (Electroencephalogram) signals. The fuzzy pre classifier is used to classify the risk levels of epilepsy based on extracted parameters like energy, variance, peaks, sharp and spike waves, duration, events and covariance from the EEG signals of the patient. Hierarchical soft decision tree (post classifier with max-min criteria) four types are applied on the classified data to identify the optimized risk level (singleton) which characterizes the patientpsilas risk level. The efficacy of the above methods is compared based on the bench mark parameters such as performance index (PI), and quality value (QV). A group of ten patients with known epilepsy findings are used for this study. High PI such as 95.88 % was obtained at QVpsilas of 22.43 in the hierarchical decision tree optimization when compared to the value of 40% and 6.25 through fuzzy classifier respectively. It is identified the hierarchical soft decision tree (Hier & h min-max) method is a good post classifier.","PeriodicalId":22230,"journal":{"name":"TENCON 2008 - 2008 IEEE Region 10 Conference","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2008-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"TENCON 2008 - 2008 IEEE Region 10 Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON.2008.4766545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
The purpose of this paper is to identify the practicability of hierarchical soft (max-min) decision trees in optimization of fuzzy outputs in the classification of epilepsy risk levels from EEG (Electroencephalogram) signals. The fuzzy pre classifier is used to classify the risk levels of epilepsy based on extracted parameters like energy, variance, peaks, sharp and spike waves, duration, events and covariance from the EEG signals of the patient. Hierarchical soft decision tree (post classifier with max-min criteria) four types are applied on the classified data to identify the optimized risk level (singleton) which characterizes the patientpsilas risk level. The efficacy of the above methods is compared based on the bench mark parameters such as performance index (PI), and quality value (QV). A group of ten patients with known epilepsy findings are used for this study. High PI such as 95.88 % was obtained at QVpsilas of 22.43 in the hierarchical decision tree optimization when compared to the value of 40% and 6.25 through fuzzy classifier respectively. It is identified the hierarchical soft decision tree (Hier & h min-max) method is a good post classifier.
本文的目的是确定层次软(最大-最小)决策树在从EEG(脑电图)信号中分类癫痫风险等级的模糊输出优化中的实用性。利用模糊预分类器从患者的脑电图信号中提取能量、方差、峰值、尖峰和尖峰波、持续时间、事件和协方差等参数,对癫痫的风险等级进行分类。在分类数据上应用四种类型的分层软决策树(最大最小准则的后分类器)来识别表征患者整体风险水平的优化风险水平(单例)。基于性能指数(PI)、质量值(QV)等基准参数对上述方法的有效性进行比较。这项研究使用了10名已知癫痫症状的患者。层次决策树优化在QVpsilas为22.43时获得了95.88%的高PI,而模糊分类器的PI分别为40%和6.25。结果表明,分层软决策树(Hier & h min-max)方法是一种较好的后分类器。