M. Richmond, Colin Fisher, A. M. Fisher, R. Pearce, W. Bailey
{"title":"Effect of Ordering Method on Tobacco-Specific Nitrosamines (TSNAs) Content in Dark Air-Cured and Burley Tobacco","authors":"M. Richmond, Colin Fisher, A. M. Fisher, R. Pearce, W. Bailey","doi":"10.3381/tobsci-d-22-00003","DOIUrl":null,"url":null,"abstract":"Tobacco-specific nitrosamines (TSNAs) are known carcinogens in cured tobacco. They are produced primarily during the curing process, but agronomic practices occurring in the field as well as handling practices after curing may also influence TSNA levels, particularly if cured leaf is stored at high moisture. After curing and during market preparation, the cured leaf must be supple to avoid breakage. Ideally, this is after a period of wet weather during which the leaf absorbs moisture and comes into order or case. Often the weather remains dry for long periods after curing, and growers resort to artificial ordering to take down a sufficient amount of their crop to work on for several days, during which time the tobacco is bulked. The effect of this artificial ordering on TSNAs during short-term storage is not known. Field experiments were conducted in each of 3 years at two locations in Kentucky to evaluate TSNA accumulation following several ordering methods in dark air-cured and burley tobacco types. Treatments included natural ordering and variants of steaming and misting, which are both commonly used artificial ordering methods. At the Princeton location, samples were taken within 24 hr after the ordering treatments were done. In Lexington, samples were taken sequentially at takedown, after ordering, and after 14 d in the bulk. There were limited and inconsistent differences in total TSNAs between methods of ordering, and the TSNA levels were not affected by the moisture content of the leaf during bulking. There was a significant increase in TSNAs in the 24-hr period between takedown and bulking, which cannot be explained. We conclude that, in Kentucky, growers should use ordering methods that are best suited for their production system, but this may not be the case in warmer climates.","PeriodicalId":10257,"journal":{"name":"中国烟草科学","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"中国烟草科学","FirstCategoryId":"1091","ListUrlMain":"https://doi.org/10.3381/tobsci-d-22-00003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Tobacco-specific nitrosamines (TSNAs) are known carcinogens in cured tobacco. They are produced primarily during the curing process, but agronomic practices occurring in the field as well as handling practices after curing may also influence TSNA levels, particularly if cured leaf is stored at high moisture. After curing and during market preparation, the cured leaf must be supple to avoid breakage. Ideally, this is after a period of wet weather during which the leaf absorbs moisture and comes into order or case. Often the weather remains dry for long periods after curing, and growers resort to artificial ordering to take down a sufficient amount of their crop to work on for several days, during which time the tobacco is bulked. The effect of this artificial ordering on TSNAs during short-term storage is not known. Field experiments were conducted in each of 3 years at two locations in Kentucky to evaluate TSNA accumulation following several ordering methods in dark air-cured and burley tobacco types. Treatments included natural ordering and variants of steaming and misting, which are both commonly used artificial ordering methods. At the Princeton location, samples were taken within 24 hr after the ordering treatments were done. In Lexington, samples were taken sequentially at takedown, after ordering, and after 14 d in the bulk. There were limited and inconsistent differences in total TSNAs between methods of ordering, and the TSNA levels were not affected by the moisture content of the leaf during bulking. There was a significant increase in TSNAs in the 24-hr period between takedown and bulking, which cannot be explained. We conclude that, in Kentucky, growers should use ordering methods that are best suited for their production system, but this may not be the case in warmer climates.
期刊介绍:
Chinese Tobacco Science is an academic scientific journal (bimonthly) under the supervision of the Ministry of Agriculture and Rural Affairs of the People's Republic of China, and sponsored by the Tobacco Research Institute of the Chinese Academy of Agricultural Sciences and the Qingzhou Tobacco Research Institute of China National Tobacco Corporation. It was founded in 1979 and is publicly distributed nationwide. The journal mainly publishes academic papers on scientific research results, new production technologies, and modern management in my country's tobacco science research and tobacco production technology. In addition, it also publishes forward-looking review articles in the field of tobacco research. There are columns such as tobacco genetics and breeding, cultivation technology, modulation and processing, physiology and biochemistry, plant protection, review or monograph, quality chemistry, etc.