Free vibrations of Timoshenko nanoscale beams based on a hybrid integral strain- and stress-driven nonlocal model

IF 1.4 4区 工程技术 Q3 ENGINEERING, MECHANICAL
M. Faraji Oskouie, R. Ansari, H. Rouhi
{"title":"Free vibrations of Timoshenko nanoscale beams based on a hybrid integral strain- and stress-driven nonlocal model","authors":"M. Faraji Oskouie, R. Ansari, H. Rouhi","doi":"10.1177/03093247221145793","DOIUrl":null,"url":null,"abstract":"Several non-classical elasticity theories are used for considering the size-dependent behavior of structures at small scales. The nonlocal theory is widely used to reflect the softening behavior of material at small scales, and theories like the strain gradient theory are employed to reflect the hardening behavior. In this article, the most general form of integral strain- and stress-driven nonlocal models with two nonlocal parameters is developed which is able to consider both hardening and softening influences simultaneously. To this end, it is considered that the stress field at the entire points of the domain is a function of strain field of the entire points of the domain. The free vibration problem of first-order shear deformable beams is solved herein. The integral form of governing equations and associated boundary conditions are obtained first, and then directly solved in a numerical approach. Through developing an efficient matrix formulation and using differential and integral matrix operators, the discretized governing equations are obtained. The simultaneous effects of strain- and stress-driven nonlocal parameters on the natural frequencies of fully clamped, fully simply-supported, and clamped-free nanobeams are investigated. The results indicate that the paradox related to the behavior of clamped-free nanobeams is resolved using the presented integral nonlocal formulation. Also, it is revealed that it is possible to find some specific values of nonlocal parameters at which the prediction of hybrid nonlocal model coincides with that of classical elasticity theory.","PeriodicalId":50038,"journal":{"name":"Journal of Strain Analysis for Engineering Design","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Strain Analysis for Engineering Design","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/03093247221145793","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 1

Abstract

Several non-classical elasticity theories are used for considering the size-dependent behavior of structures at small scales. The nonlocal theory is widely used to reflect the softening behavior of material at small scales, and theories like the strain gradient theory are employed to reflect the hardening behavior. In this article, the most general form of integral strain- and stress-driven nonlocal models with two nonlocal parameters is developed which is able to consider both hardening and softening influences simultaneously. To this end, it is considered that the stress field at the entire points of the domain is a function of strain field of the entire points of the domain. The free vibration problem of first-order shear deformable beams is solved herein. The integral form of governing equations and associated boundary conditions are obtained first, and then directly solved in a numerical approach. Through developing an efficient matrix formulation and using differential and integral matrix operators, the discretized governing equations are obtained. The simultaneous effects of strain- and stress-driven nonlocal parameters on the natural frequencies of fully clamped, fully simply-supported, and clamped-free nanobeams are investigated. The results indicate that the paradox related to the behavior of clamped-free nanobeams is resolved using the presented integral nonlocal formulation. Also, it is revealed that it is possible to find some specific values of nonlocal parameters at which the prediction of hybrid nonlocal model coincides with that of classical elasticity theory.
基于应变和应力驱动非局部混合积分模型的Timoshenko纳米梁的自由振动
几种非经典弹性理论用于考虑小尺度结构的尺寸依赖行为。非局部理论被广泛用于反映材料在小尺度上的软化行为,应变梯度理论等理论被用于反映材料的硬化行为。本文提出了具有两个非局部参数的整体应变和应力驱动非局部模型的最一般形式,该模型能够同时考虑硬化和软化影响。为此,认为该区域各点处的应力场是该区域各点应变场的函数。本文解决了一阶剪切变形梁的自由振动问题。首先得到控制方程的积分形式和相关的边界条件,然后直接用数值方法求解。通过建立有效的矩阵公式,利用微分和积分矩阵算子,得到了离散化的控制方程。研究了应变和应力驱动的非局部参数对全夹固、全简支和无夹固纳米梁固有频率的同时影响。结果表明,利用所提出的非局部积分公式可以解决与无箝位纳米梁的行为有关的悖论。同时揭示了在非局部参数的特定取值下,混合非局部模型的预测与经典弹性理论的预测一致是可能的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Strain Analysis for Engineering Design
Journal of Strain Analysis for Engineering Design 工程技术-材料科学:表征与测试
CiteScore
3.50
自引率
6.20%
发文量
25
审稿时长
>12 weeks
期刊介绍: The Journal of Strain Analysis for Engineering Design provides a forum for work relating to the measurement and analysis of strain that is appropriate to engineering design and practice. "Since launching in 1965, The Journal of Strain Analysis has been a collegiate effort, dedicated to providing exemplary service to our authors. We welcome contributions related to analytical, experimental, and numerical techniques for the analysis and/or measurement of stress and/or strain, or studies of relevant material properties and failure modes. Our international Editorial Board contains experts in all of these fields and is keen to encourage papers on novel techniques and innovative applications." Professor Eann Patterson - University of Liverpool, UK This journal is a member of the Committee on Publication Ethics (COPE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信