Generalized $g$-iterated fractional approximations by sublinear operators

Q4 Mathematics
G. Anastassiou
{"title":"Generalized $g$-iterated fractional approximations by sublinear operators","authors":"G. Anastassiou","doi":"10.4064/am2400-1-2020","DOIUrl":null,"url":null,"abstract":". We study approximation of functions by sublinear positive operators with applications to several max-product operators under generalized g -iterated fractional differentiability. Our work is based on our generalized g -iterated fractional results about positive sublinear operators. We produce Jackson type inequalities under iterated initial conditions. Our approach is quantitative by deriving inequalities with right hand sides involving the modulus of continuity of a generalized g -iterated fractional derivative of the function being approximated.","PeriodicalId":52313,"journal":{"name":"Applicationes Mathematicae","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applicationes Mathematicae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4064/am2400-1-2020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

Abstract

. We study approximation of functions by sublinear positive operators with applications to several max-product operators under generalized g -iterated fractional differentiability. Our work is based on our generalized g -iterated fractional results about positive sublinear operators. We produce Jackson type inequalities under iterated initial conditions. Our approach is quantitative by deriving inequalities with right hand sides involving the modulus of continuity of a generalized g -iterated fractional derivative of the function being approximated.
次线性算子的广义$g$迭代分数近似
。研究了次线性正算子在广义g -迭代分数可微性条件下的函数逼近问题,并将其应用于几种极大积算子。我们的工作是基于关于正次线性算子的广义g -迭代分数结果。我们在迭代初始条件下得到了Jackson型不等式。我们的方法是定量的,通过推导右手边的不等式,涉及被逼近函数的广义g迭代分数阶导数的连续性模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applicationes Mathematicae
Applicationes Mathematicae Mathematics-Applied Mathematics
CiteScore
0.30
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信