{"title":"Molecular dynamics study on the transport of water molecules and chloride ions in graphene oxide-modified cement composites","authors":"Yu Chen, W. Zhang, Linlong Zhen, Guohao Li","doi":"10.1080/09276440.2023.2215627","DOIUrl":null,"url":null,"abstract":"ABSTRACT The ability of composite cement materials to resist erosion by chloride ions is a critical factor in evaluating their dependability. This study aims to examine the influence of graphene oxide on the transportation of water molecules and chloride ions in modified cement composites. Molecular dynamics analysis suggests that graphene oxide can effectively bond to the substrate of hydrated calcium silicate gel pores, which forms a stronger confined fluid zone under the action of electrostatic interactions and van der Waals forces. Graphene oxide has negatively charged oxygen functional groups on its surface, and within a certain size range, it becomes more effective at restricting the penetration of water molecules and chloride ions. In addition, chloride solution immersion experiments were performed on graphene oxide modified cement mortar. The results demonstrated that a small quantity of graphene oxide can significantly improve the resistance of modified cement mortar to chloride ion erosion, whereas excessive amounts are detrimental, which aligns with the simulation results. It is hoped that this study will provide valuable insights into the use of graphene oxide nanoparticles in the corrosion protection of cement composites. GRAPHICAL ABSTRACT","PeriodicalId":10653,"journal":{"name":"Composite Interfaces","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composite Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/09276440.2023.2215627","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 1
Abstract
ABSTRACT The ability of composite cement materials to resist erosion by chloride ions is a critical factor in evaluating their dependability. This study aims to examine the influence of graphene oxide on the transportation of water molecules and chloride ions in modified cement composites. Molecular dynamics analysis suggests that graphene oxide can effectively bond to the substrate of hydrated calcium silicate gel pores, which forms a stronger confined fluid zone under the action of electrostatic interactions and van der Waals forces. Graphene oxide has negatively charged oxygen functional groups on its surface, and within a certain size range, it becomes more effective at restricting the penetration of water molecules and chloride ions. In addition, chloride solution immersion experiments were performed on graphene oxide modified cement mortar. The results demonstrated that a small quantity of graphene oxide can significantly improve the resistance of modified cement mortar to chloride ion erosion, whereas excessive amounts are detrimental, which aligns with the simulation results. It is hoped that this study will provide valuable insights into the use of graphene oxide nanoparticles in the corrosion protection of cement composites. GRAPHICAL ABSTRACT
期刊介绍:
Composite Interfaces publishes interdisciplinary scientific and engineering research articles on composite interfaces/interphases and their related phenomena. Presenting new concepts for the fundamental understanding of composite interface study, the journal balances interest in chemistry, physical properties, mechanical properties, molecular structures, characterization techniques and theories.
Composite Interfaces covers a wide range of topics including - but not restricted to:
-surface treatment of reinforcing fibers and fillers-
effect of interface structure on mechanical properties, physical properties, curing and rheology-
coupling agents-
synthesis of matrices designed to promote adhesion-
molecular and atomic characterization of interfaces-
interfacial morphology-
dynamic mechanical study of interphases-
interfacial compatibilization-
adsorption-
tribology-
composites with organic, inorganic and metallic materials-
composites applied to aerospace, automotive, appliances, electronics, construction, marine, optical and biomedical fields