Molecular dynamics study on the transport of water molecules and chloride ions in graphene oxide-modified cement composites

IF 2.1 4区 材料科学 Q3 MATERIALS SCIENCE, COMPOSITES
Yu Chen, W. Zhang, Linlong Zhen, Guohao Li
{"title":"Molecular dynamics study on the transport of water molecules and chloride ions in graphene oxide-modified cement composites","authors":"Yu Chen, W. Zhang, Linlong Zhen, Guohao Li","doi":"10.1080/09276440.2023.2215627","DOIUrl":null,"url":null,"abstract":"ABSTRACT The ability of composite cement materials to resist erosion by chloride ions is a critical factor in evaluating their dependability. This study aims to examine the influence of graphene oxide on the transportation of water molecules and chloride ions in modified cement composites. Molecular dynamics analysis suggests that graphene oxide can effectively bond to the substrate of hydrated calcium silicate gel pores, which forms a stronger confined fluid zone under the action of electrostatic interactions and van der Waals forces. Graphene oxide has negatively charged oxygen functional groups on its surface, and within a certain size range, it becomes more effective at restricting the penetration of water molecules and chloride ions. In addition, chloride solution immersion experiments were performed on graphene oxide modified cement mortar. The results demonstrated that a small quantity of graphene oxide can significantly improve the resistance of modified cement mortar to chloride ion erosion, whereas excessive amounts are detrimental, which aligns with the simulation results. It is hoped that this study will provide valuable insights into the use of graphene oxide nanoparticles in the corrosion protection of cement composites. GRAPHICAL ABSTRACT","PeriodicalId":10653,"journal":{"name":"Composite Interfaces","volume":"45 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composite Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/09276440.2023.2215627","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 1

Abstract

ABSTRACT The ability of composite cement materials to resist erosion by chloride ions is a critical factor in evaluating their dependability. This study aims to examine the influence of graphene oxide on the transportation of water molecules and chloride ions in modified cement composites. Molecular dynamics analysis suggests that graphene oxide can effectively bond to the substrate of hydrated calcium silicate gel pores, which forms a stronger confined fluid zone under the action of electrostatic interactions and van der Waals forces. Graphene oxide has negatively charged oxygen functional groups on its surface, and within a certain size range, it becomes more effective at restricting the penetration of water molecules and chloride ions. In addition, chloride solution immersion experiments were performed on graphene oxide modified cement mortar. The results demonstrated that a small quantity of graphene oxide can significantly improve the resistance of modified cement mortar to chloride ion erosion, whereas excessive amounts are detrimental, which aligns with the simulation results. It is hoped that this study will provide valuable insights into the use of graphene oxide nanoparticles in the corrosion protection of cement composites. GRAPHICAL ABSTRACT
水分子和氯离子在氧化石墨烯改性水泥复合材料中传输的分子动力学研究
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Composite Interfaces
Composite Interfaces 工程技术-材料科学:复合
CiteScore
5.00
自引率
3.80%
发文量
58
审稿时长
3 months
期刊介绍: Composite Interfaces publishes interdisciplinary scientific and engineering research articles on composite interfaces/interphases and their related phenomena. Presenting new concepts for the fundamental understanding of composite interface study, the journal balances interest in chemistry, physical properties, mechanical properties, molecular structures, characterization techniques and theories. Composite Interfaces covers a wide range of topics including - but not restricted to: -surface treatment of reinforcing fibers and fillers- effect of interface structure on mechanical properties, physical properties, curing and rheology- coupling agents- synthesis of matrices designed to promote adhesion- molecular and atomic characterization of interfaces- interfacial morphology- dynamic mechanical study of interphases- interfacial compatibilization- adsorption- tribology- composites with organic, inorganic and metallic materials- composites applied to aerospace, automotive, appliances, electronics, construction, marine, optical and biomedical fields
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信