Le cône kählérien d'une variété hyperkählérienne

Sébastien Boucksom
{"title":"Le cône kählérien d'une variété hyperkählérienne","authors":"Sébastien Boucksom","doi":"10.1016/S0764-4442(01)02158-9","DOIUrl":null,"url":null,"abstract":"<div><p>We answer a question of D. Huybrechts about the Kähler cone of a compact hyperkähler manifold. More precisely, we show how the methods he uses to describe the closure of this cone do in fact extend to get the following description: the Kähler cone of a hyperkähler manifold is the set of elements of the positive cone attached to the canonical quadratic form which are positive on the rational curves.</p></div>","PeriodicalId":100300,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","volume":"333 10","pages":"Pages 935-938"},"PeriodicalIF":0.0000,"publicationDate":"2001-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0764-4442(01)02158-9","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0764444201021589","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

Abstract

We answer a question of D. Huybrechts about the Kähler cone of a compact hyperkähler manifold. More precisely, we show how the methods he uses to describe the closure of this cone do in fact extend to get the following description: the Kähler cone of a hyperkähler manifold is the set of elements of the positive cone attached to the canonical quadratic form which are positive on the rational curves.

hyperkahler品种的kahler锥体
我们回答了D. Huybrechts关于紧致hyperkähler流形的Kähler锥的问题。更准确地说,我们展示了他用来描述这个锥的闭包的方法实际上是如何扩展到以下描述的:hyperkähler流形的Kähler锥是附加在规范二次型上的正锥的元素的集合,这些元素在有理曲线上是正的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信