Maximum likelihood estimation in the non-ergodic fractional Vasicek model

IF 0.7 Q3 STATISTICS & PROBABILITY
S. Lohvinenko, K. Ralchenko
{"title":"Maximum likelihood estimation in the non-ergodic fractional Vasicek model","authors":"S. Lohvinenko, K. Ralchenko","doi":"10.15559/19-VMSTA140","DOIUrl":null,"url":null,"abstract":"We investigate the fractional Vasicek model described by the stochastic differential equation $dX_t=(\\alpha -\\beta X_t)\\,dt+\\gamma \\,dB^H_t$, $X_0=x_0$, driven by the fractional Brownian motion $B^H$ with the known Hurst parameter $H\\in (1/2,1)$. We study the maximum likelihood estimators for unknown parameters $\\alpha$ and $\\beta$ in the non-ergodic case (when $\\beta <0$) for arbitrary $x_0\\in \\mathbb{R}$, generalizing the result of Tanaka, Xiao and Yu (2019) for particular $x_0=\\alpha /\\beta$, derive their asymptotic distributions and prove their asymptotic independence.","PeriodicalId":42685,"journal":{"name":"Modern Stochastics-Theory and Applications","volume":"7 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2019-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Stochastics-Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15559/19-VMSTA140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 6

Abstract

We investigate the fractional Vasicek model described by the stochastic differential equation $dX_t=(\alpha -\beta X_t)\,dt+\gamma \,dB^H_t$, $X_0=x_0$, driven by the fractional Brownian motion $B^H$ with the known Hurst parameter $H\in (1/2,1)$. We study the maximum likelihood estimators for unknown parameters $\alpha$ and $\beta$ in the non-ergodic case (when $\beta <0$) for arbitrary $x_0\in \mathbb{R}$, generalizing the result of Tanaka, Xiao and Yu (2019) for particular $x_0=\alpha /\beta$, derive their asymptotic distributions and prove their asymptotic independence.
非遍历分数Vasicek模型的极大似然估计
我们研究了由随机微分方程$dX_t=(\alpha -\beta X_t)\,dt+\gamma \,dB^H_t$, $X_0=x_0$描述的分数阶Vasicek模型,该模型由已知Hurst参数$H\in (1/2,1)$的分数阶布朗运动$B^H$驱动。我们研究了任意$x_0\in \mathbb{R}$的非遍历情况下未知参数$\alpha$和$\beta$的极大似然估计量(当$\beta <0$时),推广了特定$x_0=\alpha /\beta$的Tanaka, Xiao和Yu(2019)的结果,推导了它们的渐近分布并证明了它们的渐近独立性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Modern Stochastics-Theory and Applications
Modern Stochastics-Theory and Applications STATISTICS & PROBABILITY-
CiteScore
1.30
自引率
50.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信