A criterion for cofiniteness of modules

M. Khazaei, R. Sazeedeh
{"title":"A criterion for cofiniteness of modules","authors":"M. Khazaei, R. Sazeedeh","doi":"10.4171/rsmup/128","DOIUrl":null,"url":null,"abstract":"Let $A$ be a commutative noetherian ring, $\\frak a$ be an ideal of $A$, $m,n$ be non-negative integers and let $M$ be an $A$-module such that $\\Ext^i_A(A/\\frak a,M)$ is finitely generated for all $i\\leq m+n$. We define a class $\\cS_n(\\frak a)$ of modules and we assume that $H_{\\frak a}^s(M)\\in\\cS_{n}(\\frak a)$ for all $s\\leq m$. We show that $H_{\\frak a}^s(M)$ is $\\frak a$-cofinite for all $s\\leq m$ if either $n=1$ or $n\\geq 2$ and $\\Ext_A^{i}(A/\\frak a,H_{\\frak a}^{t+s-i}(M))$ is finitely generated for all $1\\leq t\\leq n-1$, $i\\leq t-1$ and $s\\leq m$. If $A$ is a ring of dimension $d$ and $M\\in\\cS_n(\\frak a)$ for any ideal $\\frak a$ of dimension $\\leq d-1$, then we prove that $M\\in\\cS_n(\\frak a)$ for any ideal $\\frak a$ of $A$.","PeriodicalId":20997,"journal":{"name":"Rendiconti del Seminario Matematico della Università di Padova","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rendiconti del Seminario Matematico della Università di Padova","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/rsmup/128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Let $A$ be a commutative noetherian ring, $\frak a$ be an ideal of $A$, $m,n$ be non-negative integers and let $M$ be an $A$-module such that $\Ext^i_A(A/\frak a,M)$ is finitely generated for all $i\leq m+n$. We define a class $\cS_n(\frak a)$ of modules and we assume that $H_{\frak a}^s(M)\in\cS_{n}(\frak a)$ for all $s\leq m$. We show that $H_{\frak a}^s(M)$ is $\frak a$-cofinite for all $s\leq m$ if either $n=1$ or $n\geq 2$ and $\Ext_A^{i}(A/\frak a,H_{\frak a}^{t+s-i}(M))$ is finitely generated for all $1\leq t\leq n-1$, $i\leq t-1$ and $s\leq m$. If $A$ is a ring of dimension $d$ and $M\in\cS_n(\frak a)$ for any ideal $\frak a$ of dimension $\leq d-1$, then we prove that $M\in\cS_n(\frak a)$ for any ideal $\frak a$ of $A$.
模的有限性的一个判据
让 $A$ 是一个交换诺瑟环, $\frak a$ 成为…的理想 $A$, $m,n$ 是非负整数,并设 $M$ 做一个 $A$-这样的模块 $\Ext^i_A(A/\frak a,M)$ 是有限生成的吗 $i\leq m+n$. 我们定义一个类 $\cS_n(\frak a)$ 我们假设 $H_{\frak a}^s(M)\in\cS_{n}(\frak a)$ 对所有人 $s\leq m$. 我们证明了 $H_{\frak a}^s(M)$ 是 $\frak a$对所有人都是有限的 $s\leq m$ 如果有的话 $n=1$ 或 $n\geq 2$ 和 $\Ext_A^{i}(A/\frak a,H_{\frak a}^{t+s-i}(M))$ 是有限生成的吗 $1\leq t\leq n-1$, $i\leq t-1$ 和 $s\leq m$. 如果 $A$ 环有维度吗 $d$ 和 $M\in\cS_n(\frak a)$ 对于任何理想 $\frak a$ 尺寸的 $\leq d-1$,然后我们证明它 $M\in\cS_n(\frak a)$ 对于任何理想 $\frak a$ 的 $A$.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信