{"title":"The wet high intensity magnetic separation of magnesite ore waste","authors":"A. Atasoy","doi":"10.2298/hemind181010026a","DOIUrl":null,"url":null,"abstract":"The wet high intensity magnetic separation of magnesite ore waste stocked in an open pit of a magnesite mine was investigated in this paper. The received sample was subjected to physical, chemical, thermal and phase characterizations. The magnesite ore waste sample contained 77.69 % MgCO3 and a considerable amount of Fe2O3 (3.14 %). The unwanted silica and iron impurities were removed and a high-grade magnesite was experimentally obtained. Results have shown that a high-grade magnesite was obtained after subjecting the non-magnetic portion of the processed sample twice at 1.8 T. It was possible to increase the magnesite content up to 91.03 % while reducing the iron content to 0.32 % by using magnetic separation. After the calcination process at 1000?C, the sample showed mass loss on ignition of 52 % and contained 85.39 % MgO with 0.32 % Fe2O3. The final product can be used in chemical and metallurgical applications where high magnesia contents are required. The experimental results provide useful information on wet magnetic separation of magnesite wastes.","PeriodicalId":9933,"journal":{"name":"Chemical Industry","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Industry","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.2298/hemind181010026a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The wet high intensity magnetic separation of magnesite ore waste stocked in an open pit of a magnesite mine was investigated in this paper. The received sample was subjected to physical, chemical, thermal and phase characterizations. The magnesite ore waste sample contained 77.69 % MgCO3 and a considerable amount of Fe2O3 (3.14 %). The unwanted silica and iron impurities were removed and a high-grade magnesite was experimentally obtained. Results have shown that a high-grade magnesite was obtained after subjecting the non-magnetic portion of the processed sample twice at 1.8 T. It was possible to increase the magnesite content up to 91.03 % while reducing the iron content to 0.32 % by using magnetic separation. After the calcination process at 1000?C, the sample showed mass loss on ignition of 52 % and contained 85.39 % MgO with 0.32 % Fe2O3. The final product can be used in chemical and metallurgical applications where high magnesia contents are required. The experimental results provide useful information on wet magnetic separation of magnesite wastes.