GPS Integrated Inertial Navigation System Using Interactive Multiple Model Extended Kalman Filtering

P. J. Glavine, O. de Silva, G. Mann, R. Gosine
{"title":"GPS Integrated Inertial Navigation System Using Interactive Multiple Model Extended Kalman Filtering","authors":"P. J. Glavine, O. de Silva, G. Mann, R. Gosine","doi":"10.1109/MERCON.2018.8421936","DOIUrl":null,"url":null,"abstract":"This paper presents an implementation of a Global Positioning System (GPS) integrated inertial navigation system (INS) for vehicle state estimation. The INS uses Extended Kalman Filtering (EKF) of the linearized state space model for state estimation. The two INS EKF models have differently tuned noise parameters. The models operate in parallel using an interactive multiple model (IMM) approach. The IMM mixes the state and state covariance estimates from both models to yield a combined estimate of the system states. The mixing weights are based on the likelihood of each model correctly tracking the system states. The likelihoods are computed using the innovation and innovation covariance matrices of each model. The model with the higher likelihood has a larger influence on the overall state estimation. The KITTI Vision Benchmark dataset has been utilized for testing and validation. The GPS coordinates have been transformed into a local tangent frame position estimation. Orientation measurements are provided by the dataset for heading correction. The analysis shows that the INS system accurately tracks the position and orientation; the IMM filter generally outperforms the single EFK model estimator during turning maneuvers where the IMM filter produces a lower mean position error than a single EKF filter.","PeriodicalId":6603,"journal":{"name":"2018 Moratuwa Engineering Research Conference (MERCon)","volume":"44 1","pages":"414-419"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Moratuwa Engineering Research Conference (MERCon)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MERCON.2018.8421936","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper presents an implementation of a Global Positioning System (GPS) integrated inertial navigation system (INS) for vehicle state estimation. The INS uses Extended Kalman Filtering (EKF) of the linearized state space model for state estimation. The two INS EKF models have differently tuned noise parameters. The models operate in parallel using an interactive multiple model (IMM) approach. The IMM mixes the state and state covariance estimates from both models to yield a combined estimate of the system states. The mixing weights are based on the likelihood of each model correctly tracking the system states. The likelihoods are computed using the innovation and innovation covariance matrices of each model. The model with the higher likelihood has a larger influence on the overall state estimation. The KITTI Vision Benchmark dataset has been utilized for testing and validation. The GPS coordinates have been transformed into a local tangent frame position estimation. Orientation measurements are provided by the dataset for heading correction. The analysis shows that the INS system accurately tracks the position and orientation; the IMM filter generally outperforms the single EFK model estimator during turning maneuvers where the IMM filter produces a lower mean position error than a single EKF filter.
基于交互式多模型扩展卡尔曼滤波的GPS组合惯性导航系统
提出了一种用于车辆状态估计的全球定位系统(GPS)组合惯性导航系统(INS)的实现方法。该系统采用线性化状态空间模型的扩展卡尔曼滤波(EKF)进行状态估计。两个INS EKF模型具有不同的调谐噪声参数。这些模型使用交互式多模型(IMM)方法并行运行。IMM混合了来自两个模型的状态和状态协方差估计,以产生系统状态的组合估计。混合权重基于每个模型正确跟踪系统状态的可能性。使用每个模型的创新和创新协方差矩阵计算可能性。似然值越高的模型对整体状态估计的影响越大。使用KITTI视觉基准数据集进行测试和验证。将GPS坐标转换为局部切线帧位置估计。方向测量由数据集提供,用于航向校正。分析表明,该系统能够准确地跟踪目标的位置和方向;在转弯机动中,IMM滤波器通常优于单个EFK模型估计器,其中IMM滤波器比单个EKF滤波器产生更低的平均位置误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信