{"title":"Augmented Sketch: Faster and More Accurate Stream Processing","authors":"Pratanu Roy, Arijit Khan, G. Alonso","doi":"10.1145/2882903.2882948","DOIUrl":null,"url":null,"abstract":"Approximated algorithms are often used to estimate the frequency of items on high volume, fast data streams. The most common ones are variations of Count-Min sketch, which use sub-linear space for the count, but can produce errors in the counts of the most frequent items and can misclassify low-frequency items. In this paper, we improve the accuracy of sketch-based algorithms by increasing the frequency estimation accuracy of the most frequent items and reducing the possible misclassification of low-frequency items, while also improving the overall throughput. Our solution, called Augmented Sketch (ASketch), is based on a pre-filtering stage that dynamically identifies and aggregates the most frequent items. Items overflowing the pre-filtering stage are processed using a conventional sketch algorithm, thereby making the solution general and applicable in a wide range of contexts. The pre-filtering stage can be efficiently implemented with SIMD instructions on multi-core machines and can be further parallelized through pipeline parallelism where the filtering stage runs in one core and the sketch algorithm runs in another core.","PeriodicalId":20483,"journal":{"name":"Proceedings of the 2016 International Conference on Management of Data","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"135","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2882903.2882948","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 135
Abstract
Approximated algorithms are often used to estimate the frequency of items on high volume, fast data streams. The most common ones are variations of Count-Min sketch, which use sub-linear space for the count, but can produce errors in the counts of the most frequent items and can misclassify low-frequency items. In this paper, we improve the accuracy of sketch-based algorithms by increasing the frequency estimation accuracy of the most frequent items and reducing the possible misclassification of low-frequency items, while also improving the overall throughput. Our solution, called Augmented Sketch (ASketch), is based on a pre-filtering stage that dynamically identifies and aggregates the most frequent items. Items overflowing the pre-filtering stage are processed using a conventional sketch algorithm, thereby making the solution general and applicable in a wide range of contexts. The pre-filtering stage can be efficiently implemented with SIMD instructions on multi-core machines and can be further parallelized through pipeline parallelism where the filtering stage runs in one core and the sketch algorithm runs in another core.