A novel, low-latency algorithm for multiple Group-By query optimization

Duy-Hung Phan, P. Michiardi
{"title":"A novel, low-latency algorithm for multiple Group-By query optimization","authors":"Duy-Hung Phan, P. Michiardi","doi":"10.1109/ICDE.2016.7498249","DOIUrl":null,"url":null,"abstract":"Data summarization is essential for users to interact with data. Current state of the art algorithms to optimize its most general form, the multiple Group By queries, have limitations in scalability. In this paper, we propose a novel algorithm, Top-Down Splitting, that scales to hundreds or even thousands of attributes and queries, and that quickly and efficiently produces optimized query execution plans. We analyze the complexity of our algorithm, and evaluate, empirically, its scalability and effectiveness through an experimental campaign. Results show that our algorithm is remarkably faster than alternatives in prior works, while generally producing better solutions. Ultimately, our algorithm reduces up to 34% the query execution time, when compared to un-optimized plans.","PeriodicalId":6883,"journal":{"name":"2016 IEEE 32nd International Conference on Data Engineering (ICDE)","volume":"25 1","pages":"301-312"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 32nd International Conference on Data Engineering (ICDE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2016.7498249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Data summarization is essential for users to interact with data. Current state of the art algorithms to optimize its most general form, the multiple Group By queries, have limitations in scalability. In this paper, we propose a novel algorithm, Top-Down Splitting, that scales to hundreds or even thousands of attributes and queries, and that quickly and efficiently produces optimized query execution plans. We analyze the complexity of our algorithm, and evaluate, empirically, its scalability and effectiveness through an experimental campaign. Results show that our algorithm is remarkably faster than alternatives in prior works, while generally producing better solutions. Ultimately, our algorithm reduces up to 34% the query execution time, when compared to un-optimized plans.
一种新颖的、低延迟的多Group-By查询优化算法
数据汇总是用户与数据交互的必要条件。当前的最先进的算法,以优化其最一般的形式,多个Group By查询,在可扩展性方面有限制。在本文中,我们提出了一种新的算法,自顶向下分割,它可以扩展到数百甚至数千个属性和查询,并且可以快速有效地生成优化的查询执行计划。我们分析了我们的算法的复杂性,并通过实验活动经验地评估了它的可扩展性和有效性。结果表明,我们的算法明显快于以前的替代方案,同时通常产生更好的解决方案。最终,与未优化的计划相比,我们的算法最多减少了34%的查询执行时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信