CHAPTER 4. Chemical Reactivity and Cellular Uptake of Tocopherols and Tocotrienols

Yoshiro Saito, Y. Yoshida
{"title":"CHAPTER 4. Chemical Reactivity and Cellular Uptake of Tocopherols and Tocotrienols","authors":"Yoshiro Saito, Y. Yoshida","doi":"10.1039/9781788016216-00051","DOIUrl":null,"url":null,"abstract":"It is well known that both tocopherols (T) and tocotrienols (T3) act as radical-scavenging antioxidants. The reactivities of α, β, γ, and δT and the corresponding T3 isoforms toward free radicals are the same, and the corresponding T and T3 inhibit lipid peroxidation in solution similarly. T3 has a higher mobility between membranes and a higher rate of incorporation into membranes than does T. The initial rate of cellular uptake of T3 is higher than that of T, which confers an apparently higher cytoprotective capacity to T3 compared with T. The incorporated T and T3 are distributed proportionally to the lipids in the cells and function as radical scavengers to prevent lipid peroxidation and cell death. Oxidized products of vitamin E, such as tocopheryl quinone, have unique chemical and biological properties as arylating or non-arylating quinone. In this chapter, the chemical reactivity and cytoprotective effects of T and T3 are comparatively described.","PeriodicalId":23674,"journal":{"name":"Vitamin E","volume":"116 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vitamin E","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/9781788016216-00051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

It is well known that both tocopherols (T) and tocotrienols (T3) act as radical-scavenging antioxidants. The reactivities of α, β, γ, and δT and the corresponding T3 isoforms toward free radicals are the same, and the corresponding T and T3 inhibit lipid peroxidation in solution similarly. T3 has a higher mobility between membranes and a higher rate of incorporation into membranes than does T. The initial rate of cellular uptake of T3 is higher than that of T, which confers an apparently higher cytoprotective capacity to T3 compared with T. The incorporated T and T3 are distributed proportionally to the lipids in the cells and function as radical scavengers to prevent lipid peroxidation and cell death. Oxidized products of vitamin E, such as tocopheryl quinone, have unique chemical and biological properties as arylating or non-arylating quinone. In this chapter, the chemical reactivity and cytoprotective effects of T and T3 are comparatively described.
第四章。生育酚和生育三烯醇的化学反应性和细胞摄取
众所周知,生育酚(T)和生育三烯醇(T3)都是清除自由基的抗氧化剂。α、β、γ、δT和相应的T3亚型对自由基的反应性相同,相应的T和T3对溶液中脂质过氧化的抑制作用相似。与T相比,T3具有更高的膜间迁移率和更高的膜内掺入率。细胞对T3的初始摄取率高于T,这使得T3具有明显高于T的细胞保护能力。掺入的T和T3与细胞内的脂质成比例分布,并具有自由基清除剂的作用,防止脂质过氧化和细胞死亡。维生素E的氧化产物,如生育酚醌,作为芳基化或非芳基化醌具有独特的化学和生物学特性。本章对T和T3的化学反应性和细胞保护作用进行了比较描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信