Connectivity of generating graphs of nilpotent groups

Scott Harper, A. Lucchini
{"title":"Connectivity of generating graphs of nilpotent groups","authors":"Scott Harper, A. Lucchini","doi":"10.5802/alco.132","DOIUrl":null,"url":null,"abstract":"Let $G$ be $2$-generated group. The generating graph of $\\Gamma(G)$ is the graph whose vertices are the elements of $G$ and where two vertices $g$ and $h$ are adjacent if $G=\\langle g,h\\rangle$. This graph encodes the combinatorial structure of the distribution of generating pairs across $G$. In this paper we study several natural graph theoretic properties related to the connectedness of $\\Gamma(G)$ in the case where $G$ is a finite nilpotent group. For example, we prove that if $G$ is nilpotent, then the graph obtained from $\\Gamma(G)$ by removing its isolated vertices is maximally connected and, if $|G| \\geq 3$, also Hamiltonian. We pose several questions.","PeriodicalId":8427,"journal":{"name":"arXiv: Group Theory","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/alco.132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Let $G$ be $2$-generated group. The generating graph of $\Gamma(G)$ is the graph whose vertices are the elements of $G$ and where two vertices $g$ and $h$ are adjacent if $G=\langle g,h\rangle$. This graph encodes the combinatorial structure of the distribution of generating pairs across $G$. In this paper we study several natural graph theoretic properties related to the connectedness of $\Gamma(G)$ in the case where $G$ is a finite nilpotent group. For example, we prove that if $G$ is nilpotent, then the graph obtained from $\Gamma(G)$ by removing its isolated vertices is maximally connected and, if $|G| \geq 3$, also Hamiltonian. We pose several questions.
幂零群生成图的连通性
设$G$为$2$生成的组。$\Gamma(G)$的生成图是这样一个图,它的顶点是$G$的元素,其中两个顶点$g$和$h$相邻于$G=\langle g,h\rangle$。该图编码了$G$上生成对分布的组合结构。在$G$是有限幂零群的情况下,研究了与$\Gamma(G)$的连通性有关的几个自然图论性质。例如,我们证明如果$G$是幂零的,那么通过去掉$\Gamma(G)$的孤立顶点得到的图是最大连通的,如果$|G| \geq 3$也是哈密顿的。我们提出了几个问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信