Mining Periodic Patterns from Non-binary Transactions

IF 2.2 Q3 COMPUTER SCIENCE, CYBERNETICS
Jhimli Adhikari
{"title":"Mining Periodic Patterns from Non-binary Transactions","authors":"Jhimli Adhikari","doi":"10.6025/jic/2018/9/4/144-156","DOIUrl":null,"url":null,"abstract":"Pattern with time period is more valuable because it can better describe objective knowledge. Previous studies on periodic patterns from market basket data focus on patterns without considering the items with their purchased quantities. But in real-life transactions, an item could be purchased multiple times in a transaction and different items may have different quantity in the transactions. To solve this problem, we incorporate the concept of transaction frequency (TF) and database frequency (DF) of an item in a time interval. Our algorithm works in two phases. In first phase we mined locally frequent item sets along with the set of intervals and their database frequency range and second phase mines the two types of periodic patterns (cyclic and acyclic) from the list of intervals. Experimental results are provided to validate the study.","PeriodicalId":45291,"journal":{"name":"International Journal of Intelligent Computing and Cybernetics","volume":"1 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Computing and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6025/jic/2018/9/4/144-156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 0

Abstract

Pattern with time period is more valuable because it can better describe objective knowledge. Previous studies on periodic patterns from market basket data focus on patterns without considering the items with their purchased quantities. But in real-life transactions, an item could be purchased multiple times in a transaction and different items may have different quantity in the transactions. To solve this problem, we incorporate the concept of transaction frequency (TF) and database frequency (DF) of an item in a time interval. Our algorithm works in two phases. In first phase we mined locally frequent item sets along with the set of intervals and their database frequency range and second phase mines the two types of periodic patterns (cyclic and acyclic) from the list of intervals. Experimental results are provided to validate the study.
从非二进制事务中挖掘周期模式
带时间段的模式更有价值,因为它能更好地描述客观知识。以往对市场篮子数据周期模式的研究主要集中在模式上,而没有考虑商品的购买数量。但在现实交易中,一件商品可能在一次交易中被购买多次,不同的商品在交易中可能有不同的数量。为了解决这个问题,我们结合了一个项目在一个时间间隔内的事务频率(TF)和数据库频率(DF)的概念。我们的算法分为两个阶段。在第一阶段,我们挖掘本地频繁的项目集以及一组间隔和它们的数据库频率范围,第二阶段从间隔列表中挖掘两种类型的周期模式(循环和非循环)。实验结果验证了本文的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.80
自引率
4.70%
发文量
26
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信