{"title":"Generic Symmetry-Forced Infinitesimal Rigidity: Translations and Rotations","authors":"D. Bernstein","doi":"10.1137/20m1346961","DOIUrl":null,"url":null,"abstract":"We characterize the combinatorial types of symmetric frameworks in the plane that are minimally generically symmetry-forced infinitesimally rigid when the underlying symmetry group consists of rotations and translations. Along the way, we use tropical geometry to show how a construction of Edmonds and Rota that associates a matroid to a submodular function can be used to give a description of the algebraic matroid underlying a Hadamard product of two linear spaces in terms of the matroids underlying each linear space. This leads to new, short, proofs of Laman's theorem, and a theorem of Jord{a}n, Kaszanitzky, and Tanigawa characterizing the minimally generically symmetry-forced rigid graphs in the plane when the symmetry group contains only rotations.","PeriodicalId":48489,"journal":{"name":"SIAM Journal on Applied Algebra and Geometry","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2020-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Applied Algebra and Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/20m1346961","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 5
Abstract
We characterize the combinatorial types of symmetric frameworks in the plane that are minimally generically symmetry-forced infinitesimally rigid when the underlying symmetry group consists of rotations and translations. Along the way, we use tropical geometry to show how a construction of Edmonds and Rota that associates a matroid to a submodular function can be used to give a description of the algebraic matroid underlying a Hadamard product of two linear spaces in terms of the matroids underlying each linear space. This leads to new, short, proofs of Laman's theorem, and a theorem of Jord{a}n, Kaszanitzky, and Tanigawa characterizing the minimally generically symmetry-forced rigid graphs in the plane when the symmetry group contains only rotations.