Analysis and Prediction of Vibration-Induced Fretting Motion in a Blade/Receptacle Connector Pair

F. Xie, G. Flowers, Chen Chen, M. Bozack, J. Suhling, B. Rickett, R. Malucci, C. Manlapaz
{"title":"Analysis and Prediction of Vibration-Induced Fretting Motion in a Blade/Receptacle Connector Pair","authors":"F. Xie, G. Flowers, Chen Chen, M. Bozack, J. Suhling, B. Rickett, R. Malucci, C. Manlapaz","doi":"10.1109/HOLM.2007.4318221","DOIUrl":null,"url":null,"abstract":"Connector fretting propensity is generally evaluated through an exhaustive series of experimental tests, making the connector design and validation process time consuming and costly. Thus, a method using modeling and simulation techniques to predict the influence of various design factors on vibration-induced fretting propensity in electrical connectors method would very beneficial to those responsible for connector design and application. One approach is to use detailed finite element models for the connector system to relate the actual dynamics of the contact interface to the threshold vibration levels required for the onset of fretting and the relative motion transfer function. The present study describes one such model for a single tin-plated blade/receptacle connector pair. Concurrent simulation and experimental studies were performed to evaluate the threshold vibration levels as a function of excitation frequency, interface friction coefficient, and normal force. Good correlation between the experimentally observed results and those predicted by the models was obtained. Some insights and observations with regard to the effectiveness of such a modeling approach are also presented.","PeriodicalId":11624,"journal":{"name":"Electrical Contacts - 2007 Proceedings of the 53rd IEEE Holm Conference on Electrical Contacts","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2007-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrical Contacts - 2007 Proceedings of the 53rd IEEE Holm Conference on Electrical Contacts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HOLM.2007.4318221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Connector fretting propensity is generally evaluated through an exhaustive series of experimental tests, making the connector design and validation process time consuming and costly. Thus, a method using modeling and simulation techniques to predict the influence of various design factors on vibration-induced fretting propensity in electrical connectors method would very beneficial to those responsible for connector design and application. One approach is to use detailed finite element models for the connector system to relate the actual dynamics of the contact interface to the threshold vibration levels required for the onset of fretting and the relative motion transfer function. The present study describes one such model for a single tin-plated blade/receptacle connector pair. Concurrent simulation and experimental studies were performed to evaluate the threshold vibration levels as a function of excitation frequency, interface friction coefficient, and normal force. Good correlation between the experimentally observed results and those predicted by the models was obtained. Some insights and observations with regard to the effectiveness of such a modeling approach are also presented.
叶片/插座连接器副振动诱导微动分析与预测
连接器的微动倾向通常是通过一系列详尽的实验测试来评估的,这使得连接器的设计和验证过程既耗时又昂贵。因此,利用建模和仿真技术来预测各种设计因素对电连接器振动诱发微动倾向的影响,对于连接器设计和应用人员来说是非常有益的。一种方法是使用连接器系统的详细有限元模型,将接触界面的实际动力学与微动开始所需的阈值振动水平和相对运动传递函数联系起来。本研究描述了单个镀锡叶片/插座连接器对的一个这样的模型。同时进行了模拟和实验研究,以评估阈值振动水平作为激励频率,界面摩擦系数和法向力的函数。实验观测结果与模型预测结果具有较好的相关性。对这种建模方法的有效性也提出了一些见解和观察。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信