New baryonic and mesonic observables from NA61/SHINE

A. Marcinek
{"title":"New baryonic and mesonic observables from NA61/SHINE","authors":"A. Marcinek","doi":"10.1051/epjconf/201818202082","DOIUrl":null,"url":null,"abstract":"One of the main objectives of the NA61/SHINE experiment at the CERN SPS is to study properties of strongly interacting matter. This paper presents new results on observables relevant for this part of the NA61/SHINE programme. These include the first ever measurements of $\\phi$ meson production in p+p collisions at 40 and 80 GeV, and most detailed ever experimental data at 158 GeV. This contribution demonstrates the superior accuracy of the present dataset with respect to existing measurements. The comparison of p+p to Pb+Pb collisions shows a non-trivial system size dependence of the longitudinal evolution of hidden strangeness production, contrasting with that of other mesons. Furthermore, proton density fluctuations are investigated as a possible order parameter of the second order phase transition in the neighbourhood of the critical point (CP) of strongly interacting matter. An intermittency analysis is performed of the proton second scaled factorial moments in transverse momentum space. A previous analysis of this sort revealed significant power-law fluctuations for the \"Si\"+Si system at 158A GeV measured by the NA49 experiment. The fitted power-law exponent was consistent within errors with the theoretically expected critical value, a result suggesting a baryochemical potential in the vicinity of the CP of about 250 MeV. The analysis will now be extended to NA61/SHINE systems of similar size, Be+Be and Ar+Sc, at 150A GeV. Finally, spectator-induced electromagnetic (EM) effects on charged meson production are being studied and bring information on the space-time position of the pion formation zone, which appears to be much closer to the spectator system for faster pions than for slower ones. On that basis, we demonstrate that the longitudinal evolution of the system at CERN SPS energies may be interpreted as a pure consequence of local energy-momentum conservation.","PeriodicalId":8429,"journal":{"name":"arXiv: High Energy Physics - Experiment","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: High Energy Physics - Experiment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/epjconf/201818202082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

One of the main objectives of the NA61/SHINE experiment at the CERN SPS is to study properties of strongly interacting matter. This paper presents new results on observables relevant for this part of the NA61/SHINE programme. These include the first ever measurements of $\phi$ meson production in p+p collisions at 40 and 80 GeV, and most detailed ever experimental data at 158 GeV. This contribution demonstrates the superior accuracy of the present dataset with respect to existing measurements. The comparison of p+p to Pb+Pb collisions shows a non-trivial system size dependence of the longitudinal evolution of hidden strangeness production, contrasting with that of other mesons. Furthermore, proton density fluctuations are investigated as a possible order parameter of the second order phase transition in the neighbourhood of the critical point (CP) of strongly interacting matter. An intermittency analysis is performed of the proton second scaled factorial moments in transverse momentum space. A previous analysis of this sort revealed significant power-law fluctuations for the "Si"+Si system at 158A GeV measured by the NA49 experiment. The fitted power-law exponent was consistent within errors with the theoretically expected critical value, a result suggesting a baryochemical potential in the vicinity of the CP of about 250 MeV. The analysis will now be extended to NA61/SHINE systems of similar size, Be+Be and Ar+Sc, at 150A GeV. Finally, spectator-induced electromagnetic (EM) effects on charged meson production are being studied and bring information on the space-time position of the pion formation zone, which appears to be much closer to the spectator system for faster pions than for slower ones. On that basis, we demonstrate that the longitudinal evolution of the system at CERN SPS energies may be interpreted as a pure consequence of local energy-momentum conservation.
来自NA61/SHINE的新重子和中子观测
欧洲核子研究中心SPS的NA61/SHINE实验的主要目标之一是研究强相互作用物质的性质。本文介绍了与NA61/SHINE计划有关的新观测结果。其中包括在40和80 GeV的p+p碰撞中首次测量的$\phi$介子产生,以及在158 GeV的最详细的实验数据。这一贡献证明了当前数据集相对于现有测量的优越准确性。p+p和Pb+Pb碰撞的比较表明,与其他介子相比,隐藏奇异度产生的纵向演化对系统大小的依赖性很大。进一步研究了质子密度波动作为强相互作用物质临界点附近二阶相变的可能阶参量。对质子在横向动量空间中的二阶阶乘矩进行了间歇分析。先前的分析表明,NA49实验测量的158A GeV下“Si”+Si体系存在显著的幂律波动。拟合的幂律指数在误差范围内与理论期望的临界值一致,结果表明在CP附近的重化学势约为250 MeV。分析现在将扩展到类似尺寸的NA61/SHINE系统,be + be和Ar+Sc, 150A GeV。最后,对带电介子产生的观众感应电磁(EM)效应进行了研究,并带来了有关介子形成区的时空位置的信息,快速介子的形成区似乎比慢速介子的形成区更接近观众系统。在此基础上,我们证明了系统在CERN SPS能量下的纵向演化可以被解释为纯粹的局部能量动量守恒的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信