Estimating atmospheric motion winds from satellite image data using space-time drift models

IF 1.5 3区 环境科学与生态学 Q4 ENVIRONMENTAL SCIENCES
Environmetrics Pub Date : 2023-07-06 DOI:10.1002/env.2818
Indranil Sahoo, Joseph Guinness, Brian J. Reich
{"title":"Estimating atmospheric motion winds from satellite image data using space-time drift models","authors":"Indranil Sahoo,&nbsp;Joseph Guinness,&nbsp;Brian J. Reich","doi":"10.1002/env.2818","DOIUrl":null,"url":null,"abstract":"<p>Geostationary weather satellites collect high-resolution data comprising a series of images. The Derived Motion Winds (DMW) Algorithm is commonly used to process these data and estimate atmospheric winds by tracking features in the images. However, the wind estimates from the DMW Algorithm are often missing and do not come with uncertainty measures. Also, the DMW Algorithm estimates can only be half-integers, since the algorithm requires the original and shifted data to be at the same locations, in order to calculate the displacement vector between them. This motivates us to statistically model wind motions as a spatial process drifting in time. Using a covariance function that depends on spatial and temporal lags and a drift parameter to capture the wind speed and wind direction, we estimate the parameters by local maximum likelihood. Our method allows us to compute standard errors of the local estimates, enabling spatial smoothing of the estimates using a Gaussian kernel weighted by the inverses of the estimated variances. We conduct extensive simulation studies to determine the situations where our method performs well. The proposed method is applied to the GOES-15 brightness temperature data over Colorado and reduces prediction error of brightness temperature compared to the DMW Algorithm.</p>","PeriodicalId":50512,"journal":{"name":"Environmetrics","volume":"34 8","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/env.2818","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmetrics","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/env.2818","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Geostationary weather satellites collect high-resolution data comprising a series of images. The Derived Motion Winds (DMW) Algorithm is commonly used to process these data and estimate atmospheric winds by tracking features in the images. However, the wind estimates from the DMW Algorithm are often missing and do not come with uncertainty measures. Also, the DMW Algorithm estimates can only be half-integers, since the algorithm requires the original and shifted data to be at the same locations, in order to calculate the displacement vector between them. This motivates us to statistically model wind motions as a spatial process drifting in time. Using a covariance function that depends on spatial and temporal lags and a drift parameter to capture the wind speed and wind direction, we estimate the parameters by local maximum likelihood. Our method allows us to compute standard errors of the local estimates, enabling spatial smoothing of the estimates using a Gaussian kernel weighted by the inverses of the estimated variances. We conduct extensive simulation studies to determine the situations where our method performs well. The proposed method is applied to the GOES-15 brightness temperature data over Colorado and reduces prediction error of brightness temperature compared to the DMW Algorithm.

Abstract Image

利用时空漂移模型从卫星图像数据估算大气运动风
地球静止气象卫星收集由一系列图像组成的高分辨率数据。推导运动风(DMW)算法通常用于处理这些数据,并通过跟踪图像中的特征来估计大气风。然而,DMW 算法得出的风力估计值往往缺失,而且没有不确定性度量。此外,DMW 算法的估计值只能是半整数,因为该算法要求原始数据和移动数据位于相同位置,以便计算它们之间的位移矢量。这促使我们将风动作为随时间漂移的空间过程进行统计建模。利用取决于空间和时间滞后的协方差函数,以及捕捉风速和风向的漂移参数,我们通过局部最大似然估计参数。通过我们的方法,我们可以计算局部估计值的标准误差,并使用由估计方差的倒数加权的高斯核对估计值进行空间平滑处理。我们进行了大量的模拟研究,以确定我们的方法在哪些情况下表现良好。我们将提出的方法应用于科罗拉多州的 GOES-15 亮度温度数据,与 DMW 算法相比,该方法降低了亮度温度的预测误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmetrics
Environmetrics 环境科学-环境科学
CiteScore
2.90
自引率
17.60%
发文量
67
审稿时长
18-36 weeks
期刊介绍: Environmetrics, the official journal of The International Environmetrics Society (TIES), an Association of the International Statistical Institute, is devoted to the dissemination of high-quality quantitative research in the environmental sciences. The journal welcomes pertinent and innovative submissions from quantitative disciplines developing new statistical and mathematical techniques, methods, and theories that solve modern environmental problems. Articles must proffer substantive, new statistical or mathematical advances to answer important scientific questions in the environmental sciences, or must develop novel or enhanced statistical methodology with clear applications to environmental science. New methods should be illustrated with recent environmental data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信