{"title":"System reliability evaluation and dynamic optimization based on an improved reliability block diagram","authors":"Liu Tianyu, Pan Zhengqiang, Song Guopeng","doi":"10.1177/1748006x231183196","DOIUrl":null,"url":null,"abstract":"Reliability block diagram (RBD) is an effective tool for modeling and evaluating system reliability. During operation, a system’s reliability may decrease significantly due to the failure of certain critical nodes and thus should be reconfigured. This paper presents a framework for system reliability evaluation and dynamic optimization based on RBD, designed from the perspective of system users. First, we improve the classic RBD model with a new encoding scheme and develop an accurate RBD computation algorithm that is easily recognized by computers and highly efficient. Second, we create an optimization algorithm based on Tabu Search to reconfigure the system after node failure, striking a balance between system reliability recovery and RBD variation amplitude. Finally, we provide some numerical examples and a computational experiment based on a practical instance from a navy fleet to demonstrate the correctness and effectiveness of our proposed methods.","PeriodicalId":51266,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part O-Journal of Risk and Reliability","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers Part O-Journal of Risk and Reliability","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/1748006x231183196","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
Reliability block diagram (RBD) is an effective tool for modeling and evaluating system reliability. During operation, a system’s reliability may decrease significantly due to the failure of certain critical nodes and thus should be reconfigured. This paper presents a framework for system reliability evaluation and dynamic optimization based on RBD, designed from the perspective of system users. First, we improve the classic RBD model with a new encoding scheme and develop an accurate RBD computation algorithm that is easily recognized by computers and highly efficient. Second, we create an optimization algorithm based on Tabu Search to reconfigure the system after node failure, striking a balance between system reliability recovery and RBD variation amplitude. Finally, we provide some numerical examples and a computational experiment based on a practical instance from a navy fleet to demonstrate the correctness and effectiveness of our proposed methods.
期刊介绍:
The Journal of Risk and Reliability is for researchers and practitioners who are involved in the field of risk analysis and reliability engineering. The remit of the Journal covers concepts, theories, principles, approaches, methods and models for the proper understanding, assessment, characterisation and management of the risk and reliability of engineering systems. The journal welcomes papers which are based on mathematical and probabilistic analysis, simulation and/or optimisation, as well as works highlighting conceptual and managerial issues. Papers that provide perspectives on current practices and methods, and how to improve these, are also welcome