Machinery Health Prognosis - Data Driven Approach Using Threshold Regression

H. Murtaza, A. Mansoor, A. S. Soomro, H. Mushtaq
{"title":"Machinery Health Prognosis - Data Driven Approach Using Threshold Regression","authors":"H. Murtaza, A. Mansoor, A. S. Soomro, H. Mushtaq","doi":"10.26692/SURJ/2018.01.0028","DOIUrl":null,"url":null,"abstract":"Machinery health data is the backbone of prognostics. Effective prognostic, from the machinery data, leads towards operational reliability, reduced machinery downtime, cost savings, secondary/catastrophic failures etc. Various methodologies have been adopted by the researchers in an effort to precisely forecast/predict machinery health. In this study, Threshold Regression Methodology has been applied to a machinery vibration data to estimate future health state of machinery. The results show that the proposed method is an effective and reliable approach for data driven prognostics.","PeriodicalId":21859,"journal":{"name":"Sindh University Research Journal","volume":"159 1","pages":"159-164"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sindh University Research Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26692/SURJ/2018.01.0028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Machinery health data is the backbone of prognostics. Effective prognostic, from the machinery data, leads towards operational reliability, reduced machinery downtime, cost savings, secondary/catastrophic failures etc. Various methodologies have been adopted by the researchers in an effort to precisely forecast/predict machinery health. In this study, Threshold Regression Methodology has been applied to a machinery vibration data to estimate future health state of machinery. The results show that the proposed method is an effective and reliable approach for data driven prognostics.
机械健康预后-使用阈值回归的数据驱动方法
机械健康数据是预测的支柱。有效的预测,从机器数据,导致运行可靠性,减少机器停机时间,节约成本,二次/灾难性故障等。研究人员采用了各种方法来精确预测机器的健康状况。本研究将阈值回归方法应用于机械振动数据,以估计机械未来的健康状态。结果表明,该方法是一种有效、可靠的数据驱动预测方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信