Approximating Tree Edit Distance through String Edit Distance for Binary Tree Codes

IF 0.4 4区 计算机科学 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Taku Aratsu, K. Hirata, T. Kuboyama
{"title":"Approximating Tree Edit Distance through String Edit Distance for Binary Tree Codes","authors":"Taku Aratsu, K. Hirata, T. Kuboyama","doi":"10.3233/FI-2010-282","DOIUrl":null,"url":null,"abstract":"This article proposes an approximation of the tree edit distance through the string edit distance for binary tree codes, instead of for Euler strings introduced by Akutsu (2006). Here, a binary tree code is a string obtained by traversing a binary tree representation with two kinds of dummy nodes of a tree in preorder. Then, we show that σ/2 ≤ τ ≤ (h + 1)σ + h, where τ is the tree edit distance between trees, and σ is the string edit distance between their binary tree codes and h is the minimum height of the trees.","PeriodicalId":56310,"journal":{"name":"Fundamenta Informaticae","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2009-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamenta Informaticae","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/FI-2010-282","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 8

Abstract

This article proposes an approximation of the tree edit distance through the string edit distance for binary tree codes, instead of for Euler strings introduced by Akutsu (2006). Here, a binary tree code is a string obtained by traversing a binary tree representation with two kinds of dummy nodes of a tree in preorder. Then, we show that σ/2 ≤ τ ≤ (h + 1)σ + h, where τ is the tree edit distance between trees, and σ is the string edit distance between their binary tree codes and h is the minimum height of the trees.
通过二叉树代码的字符串编辑距离逼近树编辑距离
本文提出通过二叉树编码的字符串编辑距离来近似树编辑距离,而不是Akutsu(2006)引入的欧拉字符串。在这里,二叉树代码是一个字符串,通过遍历二叉树表示获得,该二叉树表示具有预先排序的两种虚拟节点。然后,我们证明σ/2≤τ≤(h + 1)σ + h,其中τ为树之间的树编辑距离,σ为二叉树编码之间的字符串编辑距离,h为树的最小高度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fundamenta Informaticae
Fundamenta Informaticae 工程技术-计算机:软件工程
CiteScore
2.00
自引率
0.00%
发文量
61
审稿时长
9.8 months
期刊介绍: Fundamenta Informaticae is an international journal publishing original research results in all areas of theoretical computer science. Papers are encouraged contributing: solutions by mathematical methods of problems emerging in computer science solutions of mathematical problems inspired by computer science. Topics of interest include (but are not restricted to): theory of computing, complexity theory, algorithms and data structures, computational aspects of combinatorics and graph theory, programming language theory, theoretical aspects of programming languages, computer-aided verification, computer science logic, database theory, logic programming, automated deduction, formal languages and automata theory, concurrency and distributed computing, cryptography and security, theoretical issues in artificial intelligence, machine learning, pattern recognition, algorithmic game theory, bioinformatics and computational biology, quantum computing, probabilistic methods, algebraic and categorical methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信