Light Field Messaging With Deep Photographic Steganography

Eric Wengrowski, Kristin J. Dana
{"title":"Light Field Messaging With Deep Photographic Steganography","authors":"Eric Wengrowski, Kristin J. Dana","doi":"10.1109/CVPR.2019.00161","DOIUrl":null,"url":null,"abstract":"We develop Light Field Messaging (LFM), a process of embedding, transmitting, and receiving hidden information in video that is displayed on a screen and captured by a handheld camera. The goal of the system is to minimize perceived visual artifacts of the message embedding, while simultaneously maximizing the accuracy of message recovery on the camera side. LFM requires photographic steganography for embedding messages that can be displayed and camera-captured. Unlike digital steganography, the embedding requirements are significantly more challenging due to the combined effect of the screen's radiometric emittance function, the camera's sensitivity function, and the camera-display relative geometry. We devise and train a network to jointly learn a deep embedding and recovery algorithm that requires no multi-frame synchronization. A key novel component is the camera display transfer function (CDTF) to model the camera-display pipeline. To learn this CDTF we introduce a dataset (Camera-Display 1M) of 1,000,000 camera-captured images collected from 25 camera-display pairs. The result of this work is a high-performance real-time LFM system using consumer-grade displays and smartphone cameras.","PeriodicalId":6711,"journal":{"name":"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"14 1","pages":"1515-1524"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"93","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2019.00161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 93

Abstract

We develop Light Field Messaging (LFM), a process of embedding, transmitting, and receiving hidden information in video that is displayed on a screen and captured by a handheld camera. The goal of the system is to minimize perceived visual artifacts of the message embedding, while simultaneously maximizing the accuracy of message recovery on the camera side. LFM requires photographic steganography for embedding messages that can be displayed and camera-captured. Unlike digital steganography, the embedding requirements are significantly more challenging due to the combined effect of the screen's radiometric emittance function, the camera's sensitivity function, and the camera-display relative geometry. We devise and train a network to jointly learn a deep embedding and recovery algorithm that requires no multi-frame synchronization. A key novel component is the camera display transfer function (CDTF) to model the camera-display pipeline. To learn this CDTF we introduce a dataset (Camera-Display 1M) of 1,000,000 camera-captured images collected from 25 camera-display pairs. The result of this work is a high-performance real-time LFM system using consumer-grade displays and smartphone cameras.
光场信息与深摄影隐写术
我们开发了光场信息传递(LFM),这是一个嵌入、传输和接收隐藏信息的过程,这些信息显示在屏幕上,并由手持摄像机捕获。该系统的目标是最大限度地减少信息嵌入的视觉伪影,同时最大限度地提高相机侧信息恢复的准确性。LFM需要用摄影隐写术来嵌入可以显示和被相机捕获的信息。与数字隐写术不同,由于屏幕的辐射发射函数、相机的灵敏度函数和相机-显示器相对几何形状的综合影响,嵌入要求更具挑战性。我们设计并训练了一个网络来共同学习不需要多帧同步的深度嵌入和恢复算法。一个关键的新组件是摄像机显示传递函数(CDTF),用于模拟摄像机-显示管道。为了学习这种CDTF,我们引入了一个数据集(Camera-Display 1M),其中包含从25对相机-显示器中收集的1,000,000张相机捕获的图像。这项工作的结果是使用消费级显示器和智能手机相机的高性能实时LFM系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信