Constraints on the nuclear symmetry energy from asymmetric-matter calculations with chiral NN and 3N interactions

R. Somasundaram, C. Drischler, I. Tews, J. Margueron
{"title":"Constraints on the nuclear symmetry energy from asymmetric-matter calculations with chiral \nNN\n and \n3N\n interactions","authors":"R. Somasundaram, C. Drischler, I. Tews, J. Margueron","doi":"10.1103/PHYSREVC.103.045803","DOIUrl":null,"url":null,"abstract":"The nuclear symmetry energy is a key quantity in nuclear (astro)physics. It describes the isospin dependence of the nuclear equation of state (EOS), which is commonly assumed to be almost quadratic. In this work, we confront this standard quadratic expansion of the EOS with explicit asymmetric nuclear-matter calculations based on a set of commonly used Hamiltonians including two- and three-nucleon forces derived from chiral effective field theory. We study, in particular, the importance of non-quadratic contributions to the symmetry energy, including the non-analytic logarithmic term introduced by Kaiser [Phys.~Rev.~C \\textbf{91}, 065201 (2015)]. Our results suggest that the quartic contribution to the symmetry energy can be robustly determined from the various Hamiltonians employed, and we obtain 1.00(8) MeV (or 0.55(8) MeV for the potential part) at saturation density, while the logarithmic contribution to the symmetry energy is relatively small and model-dependent. We finally employ the meta-model approach to study the impact of the higher-order contributions on the neutron-star crust-core transition density, and find a small 5\\% correction.","PeriodicalId":8463,"journal":{"name":"arXiv: Nuclear Theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Nuclear Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVC.103.045803","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The nuclear symmetry energy is a key quantity in nuclear (astro)physics. It describes the isospin dependence of the nuclear equation of state (EOS), which is commonly assumed to be almost quadratic. In this work, we confront this standard quadratic expansion of the EOS with explicit asymmetric nuclear-matter calculations based on a set of commonly used Hamiltonians including two- and three-nucleon forces derived from chiral effective field theory. We study, in particular, the importance of non-quadratic contributions to the symmetry energy, including the non-analytic logarithmic term introduced by Kaiser [Phys.~Rev.~C \textbf{91}, 065201 (2015)]. Our results suggest that the quartic contribution to the symmetry energy can be robustly determined from the various Hamiltonians employed, and we obtain 1.00(8) MeV (or 0.55(8) MeV for the potential part) at saturation density, while the logarithmic contribution to the symmetry energy is relatively small and model-dependent. We finally employ the meta-model approach to study the impact of the higher-order contributions on the neutron-star crust-core transition density, and find a small 5\% correction.
手性神经网络和3N相互作用对非对称物质计算核对称能的约束
核对称能是核(天文)物理中的一个重要物理量。它描述了核状态方程(EOS)的同位旋依赖关系,通常认为它几乎是二次的。在这项工作中,我们基于一组常用的哈密顿量,包括从手性有效场论导出的两核子力和三核子力,用明确的非对称核物质计算来面对EOS的标准二次展开。我们特别研究了对称能的非二次贡献的重要性,包括Kaiser [Phys]引入的非解析对数项。[j].\textbf{中国}生物医学工程学报,2015,31(5)。我们的研究结果表明,对称能的四次贡献可以从所采用的各种哈密顿量中稳健地确定,并且我们在饱和密度下得到1.00(8)MeV(或0.55(8)MeV的势部分),而对称能的对数贡献相对较小且依赖于模型。最后,我们采用元模型方法研究了高阶贡献对中子星壳核跃迁密度的影响,并发现了5%的小修正。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信