A lower bound for splines on tetrahedral vertex stars

IF 1.6 2区 数学 Q2 MATHEMATICS, APPLIED
Michael DiPasquale, N. Villamizar
{"title":"A lower bound for splines on tetrahedral vertex stars","authors":"Michael DiPasquale, N. Villamizar","doi":"10.1137/20M1341118","DOIUrl":null,"url":null,"abstract":"A tetrahedral complex all of whose tetrahedra meet at a common vertex is called a \\textit{vertex star}. Vertex stars are a natural generalization of planar triangulations, and understanding splines on vertex stars is a crucial step to analyzing trivariate splines. It is particularly difficult to compute the dimension of splines on vertex stars in which the vertex is completely surrounded by tetrahedra -- we call these \\textit{closed} vertex stars. A formula due to Alfeld, Neamtu, and Schumaker gives the dimension of $C^r$ splines on closed vertex stars of degree at least $3r+2$. We show that this formula is a lower bound on the dimension of $C^r$ splines of degree at least $(3r+2)/2$. Our proof uses apolarity and the so-called \\textit{Waldschmidt constant} of the set of points dual to the interior faces of the vertex star. We also use an argument of Whiteley to show that the only splines of degree at most $(3r+1)/2$ on a generic closed vertex star are global polynomials.","PeriodicalId":48489,"journal":{"name":"SIAM Journal on Applied Algebra and Geometry","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2020-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Applied Algebra and Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/20M1341118","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 6

Abstract

A tetrahedral complex all of whose tetrahedra meet at a common vertex is called a \textit{vertex star}. Vertex stars are a natural generalization of planar triangulations, and understanding splines on vertex stars is a crucial step to analyzing trivariate splines. It is particularly difficult to compute the dimension of splines on vertex stars in which the vertex is completely surrounded by tetrahedra -- we call these \textit{closed} vertex stars. A formula due to Alfeld, Neamtu, and Schumaker gives the dimension of $C^r$ splines on closed vertex stars of degree at least $3r+2$. We show that this formula is a lower bound on the dimension of $C^r$ splines of degree at least $(3r+2)/2$. Our proof uses apolarity and the so-called \textit{Waldschmidt constant} of the set of points dual to the interior faces of the vertex star. We also use an argument of Whiteley to show that the only splines of degree at most $(3r+1)/2$ on a generic closed vertex star are global polynomials.
四面体顶点星上样条的下界
所有四面体在一个共同顶点相交的四面体复合体称为\textit{顶点星}。顶点星是平面三角剖分的自然推广,理解顶点星上的样条是分析三角样条的关键一步。在顶点星上计算样条的维数特别困难,其中顶点完全被四面体包围——我们称之为\textit{闭合}顶点星。由Alfeld, Neamtu和Schumaker提出的公式给出了至少为$3r+2$次的闭顶点星上$C^r$样条的维数。我们证明了这个公式是至少为$(3r+2)/2$次的$C^r$样条的维数的下界。我们的证明使用了极性和所谓的\textit{Waldschmidt常数},它是顶点星的内面对偶点的集合。我们还利用Whiteley的一个论证证明了在一个一般闭顶点星上唯一的至多$(3r+1)/2$次的样条是全局多项式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
19
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信