Exact Solutions of an Extended Jimbo-Miwa Equation by Three Distinct Methods

IF 0.7 Q2 MATHEMATICS
Ying He
{"title":"Exact Solutions of an Extended Jimbo-Miwa Equation by Three Distinct Methods","authors":"Ying He","doi":"10.1155/2023/6678058","DOIUrl":null,"url":null,"abstract":"<jats:p>In this article, we focus on exact traveling wave solutions to an extended Jimbo-Miwa equation, which is an extension of the Jimbo-Miwa equation. First, an improved <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\">\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <msup>\n <mrow>\n <mi>G</mi>\n </mrow>\n <mrow>\n <mo>′</mo>\n </mrow>\n </msup>\n <mo>/</mo>\n <mi>G</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula>-expansion method, extended <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\">\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <msup>\n <mrow>\n <mi>G</mi>\n </mrow>\n <mrow>\n <mo>′</mo>\n </mrow>\n </msup>\n <mo>/</mo>\n <mi>G</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula>-expansion method, and improved two variable (<jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\">\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <msup>\n <mrow>\n <mi>φ</mi>\n </mrow>\n <mrow>\n <mo>′</mo>\n </mrow>\n </msup>\n <mo>/</mo>\n <mi>φ</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula>, <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M4\">\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mn>1</mn>\n <mo>/</mo>\n <mi>φ</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula>) expansion method are introduced. Second, with these introduced methods, many new exact traveling wave solutions of EJM equation are constructed, including hyperbolic function solutions, trigonometric function solutions, and rational function solutions which contain many different parameters. Finally, we depict the physical explanation of the extracted solutions with the free choice of the different parameters by plotting some 3D and 2D illustrations. To the best of our knowledge, the received results have not been reported in other studies on the new extended JM equations. We hope that our results can help enrich the study of this new equation.</jats:p>","PeriodicalId":43667,"journal":{"name":"Muenster Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Muenster Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/6678058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we focus on exact traveling wave solutions to an extended Jimbo-Miwa equation, which is an extension of the Jimbo-Miwa equation. First, an improved G / G -expansion method, extended G / G -expansion method, and improved two variable ( φ / φ , 1 / φ ) expansion method are introduced. Second, with these introduced methods, many new exact traveling wave solutions of EJM equation are constructed, including hyperbolic function solutions, trigonometric function solutions, and rational function solutions which contain many different parameters. Finally, we depict the physical explanation of the extracted solutions with the free choice of the different parameters by plotting some 3D and 2D illustrations. To the best of our knowledge, the received results have not been reported in other studies on the new extended JM equations. We hope that our results can help enrich the study of this new equation.
扩展Jimbo-Miwa方程的三种不同方法的精确解
在这篇文章中,我们关注的是一个扩展的Jimbo-Miwa方程的精确行波解,它是Jimbo-Miwa方程的扩展。首先,一个改进的G ' / G扩展方法,扩展G ' / G扩展方法,并改进了两个变量φ ' / φ, 1 / φ)展开法。其次,利用这些方法构造了EJM方程的许多新的精确行波解,包括双曲函数解、三角函数解和包含许多不同参数的有理函数解。最后,我们通过绘制一些三维和二维插图,描述了在自由选择不同参数的情况下所提取的解的物理解释。据我们所知,在其他关于新扩展的JM方程的研究中尚未报道得到的结果。我们希望我们的结果可以帮助丰富这个新方程的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信