Problèmes de réaction–diffusion–convection dans des cylindres non bornés

Rozenn Texier-Picard, Vitaly Volpert
{"title":"Problèmes de réaction–diffusion–convection dans des cylindres non bornés","authors":"Rozenn Texier-Picard,&nbsp;Vitaly Volpert","doi":"10.1016/S0764-4442(01)02178-4","DOIUrl":null,"url":null,"abstract":"<div><p>The work is devoted to reaction–diffusion–convection problems in unbounded cylinders. We study the Fredholm property and properness of the corresponding elliptic operators and define the topological degree. Together with analysis of the spectrum of the linearized operators it allows us to study bifurcations of solutions and to prove existence of convective waves. Finally, we make some conclusions about the possible appearance of a “convective instability”.</p></div>","PeriodicalId":100300,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","volume":"333 12","pages":"Pages 1077-1082"},"PeriodicalIF":0.0000,"publicationDate":"2001-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0764-4442(01)02178-4","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0764444201021784","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

The work is devoted to reaction–diffusion–convection problems in unbounded cylinders. We study the Fredholm property and properness of the corresponding elliptic operators and define the topological degree. Together with analysis of the spectrum of the linearized operators it allows us to study bifurcations of solutions and to prove existence of convective waves. Finally, we make some conclusions about the possible appearance of a “convective instability”.

无边界钢瓶中的反应-扩散-对流问题
研究了无界圆柱体中的反应-扩散-对流问题。研究了相应椭圆算子的Fredholm性质和性质,并定义了拓扑度。结合对线性化算子谱的分析,我们可以研究解的分岔,并证明对流波的存在性。最后,我们对可能出现的“对流不稳定”作出了一些结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信