Надежда Григорьевна Коновенко, Ирина Николаевна Курбатова
{"title":"Специальные классы псевдоримановых пространств с f-структурой, допускающих 2F-планарные отображения","authors":"Надежда Григорьевна Коновенко, Ирина Николаевна Курбатова","doi":"10.15673/TMGC.V11I4.1304","DOIUrl":null,"url":null,"abstract":"В статье изучаются 2F-планарные отображения псевдоримановых пространств, снабженных аффинорной структурой определенного типа. Понятие 2F-планарного отображения аффинносвязных и римановых пространств было введено в рассмотрение Р.Дж. Кадемом. В его работах исследовались общие вопросы теории 2F-планарных отображений аффинносвязных и римановых пространств, снабженных аффинорной структурой. В частности, он доказал, что такое отображение по необходимости сохраняет аффинорную структуру. Мы рассматриваем 2F-планарное отображение псевдоримановых пространств с абсолютно параллельной f-структурой. Ранее мы доказали, что псевдориманово пространство с абсолютно параллельной f-структурой представляет собой произведение двух псевдоримановых пространств, одно из которых - келерово; класс псевдоримановых пространств с абсолютно параллельной f-структурой замкнут относительно рассматриваемых отображений; при условии ковариантного постоянства аффинора f-структуры в отображаемых пространствах нетривиальные 2F-планарные отображения могут быть трех типов: полные и канонические I,II типа; в зависимости от типа 2F-планарное отображение индуцирует на компонентах произведения отображаемых пространств геодезическое, голоморфно-проективное или аффинное отображение. \nВ настоящей статье продолжается исследование 2F-планарного отображения псевдоримановых пространств с абсолютно параллельной f-структурой. Для всех типов этого отображения (основного и канонических I и II ) строятся геометрические объекты, инвариантные относительно рассматриваемых отображений: неоднородный объект ( типа параметров Томаса в теории геодезических отображений римановых пространств) и тензорный (типа тензора голоморфно-проективной кривизны в теории аналитически-планарных отображений келеровых многообразий). Выделены классы пространств (2F-плоские, 2F(I)- и 2F(II)-плоские), допускающих 2F-планарное отображение. Для них выявлена структура тензора Римана и доказаны аналоги теоремы Бельтрами из теории геодезических отображений. Найдены метрики 2F-, 2F(I)- и 2F(II)-плоских пространств в специальной системе координат.","PeriodicalId":36547,"journal":{"name":"Proceedings of the International Geometry Center","volume":"46 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Geometry Center","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15673/TMGC.V11I4.1304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
В статье изучаются 2F-планарные отображения псевдоримановых пространств, снабженных аффинорной структурой определенного типа. Понятие 2F-планарного отображения аффинносвязных и римановых пространств было введено в рассмотрение Р.Дж. Кадемом. В его работах исследовались общие вопросы теории 2F-планарных отображений аффинносвязных и римановых пространств, снабженных аффинорной структурой. В частности, он доказал, что такое отображение по необходимости сохраняет аффинорную структуру. Мы рассматриваем 2F-планарное отображение псевдоримановых пространств с абсолютно параллельной f-структурой. Ранее мы доказали, что псевдориманово пространство с абсолютно параллельной f-структурой представляет собой произведение двух псевдоримановых пространств, одно из которых - келерово; класс псевдоримановых пространств с абсолютно параллельной f-структурой замкнут относительно рассматриваемых отображений; при условии ковариантного постоянства аффинора f-структуры в отображаемых пространствах нетривиальные 2F-планарные отображения могут быть трех типов: полные и канонические I,II типа; в зависимости от типа 2F-планарное отображение индуцирует на компонентах произведения отображаемых пространств геодезическое, голоморфно-проективное или аффинное отображение.
В настоящей статье продолжается исследование 2F-планарного отображения псевдоримановых пространств с абсолютно параллельной f-структурой. Для всех типов этого отображения (основного и канонических I и II ) строятся геометрические объекты, инвариантные относительно рассматриваемых отображений: неоднородный объект ( типа параметров Томаса в теории геодезических отображений римановых пространств) и тензорный (типа тензора голоморфно-проективной кривизны в теории аналитически-планарных отображений келеровых многообразий). Выделены классы пространств (2F-плоские, 2F(I)- и 2F(II)-плоские), допускающих 2F-планарное отображение. Для них выявлена структура тензора Римана и доказаны аналоги теоремы Бельтрами из теории геодезических отображений. Найдены метрики 2F-, 2F(I)- и 2F(II)-плоских пространств в специальной системе координат.