K. Thirunavukkuarasu, R. Richardson, Zhengguang Lu, D. Smirnov, Nan Huang, N. Combs, G. Pokharel, D. Mandrus
{"title":"Magneto-elastic coupling in multiferroic metal-organic framework [(CH3)2NH2]Co(HCOO)3","authors":"K. Thirunavukkuarasu, R. Richardson, Zhengguang Lu, D. Smirnov, Nan Huang, N. Combs, G. Pokharel, D. Mandrus","doi":"10.1063/9.0000147","DOIUrl":null,"url":null,"abstract":"Metal-organic frameworks based on metal-formates have emerged as a intriguing class of multiferroics with wide range of applications. In this work, we present magneto-Raman spectroscopic investigations on [(CH3)2NH2]Co(HCOO)3 belonging to this family. The spectroscopic studies were performed at magnetic fields up to 31 T at the temperature of 2.3 K. It was observed that the formate bending mode at around 798 cm−1 shifts to higher energies with increasing magnetic field. The magneto-response of the phonon also exhibits anomalies at magnetic fields of 14.5 T and 23.5 T corresponding to magnetic phase transitions. Based on our results, we conclude that the formate bending mode does play a role in facilitating the saturation of magnetic states similar to its Mn and Ni analogs.","PeriodicalId":9375,"journal":{"name":"Bulletin of the American Physical Society","volume":"68 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the American Physical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/9.0000147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Metal-organic frameworks based on metal-formates have emerged as a intriguing class of multiferroics with wide range of applications. In this work, we present magneto-Raman spectroscopic investigations on [(CH3)2NH2]Co(HCOO)3 belonging to this family. The spectroscopic studies were performed at magnetic fields up to 31 T at the temperature of 2.3 K. It was observed that the formate bending mode at around 798 cm−1 shifts to higher energies with increasing magnetic field. The magneto-response of the phonon also exhibits anomalies at magnetic fields of 14.5 T and 23.5 T corresponding to magnetic phase transitions. Based on our results, we conclude that the formate bending mode does play a role in facilitating the saturation of magnetic states similar to its Mn and Ni analogs.