An Augmented Image Captioning Model: Incorporating Hierarchical Image Information

Nathan Funckes, Erin Carrier, Greg Wolffe
{"title":"An Augmented Image Captioning Model: Incorporating Hierarchical Image Information","authors":"Nathan Funckes, Erin Carrier, Greg Wolffe","doi":"10.1109/ICMLA52953.2021.00257","DOIUrl":null,"url":null,"abstract":"Despite published accessibility standards many websites remain nan-compliant, containing images lacking accompanying textual descriptions. This leaves visually-impaired individuals unable to fully enjoy the rich wonders of the web. To help address this inequity, our research seeks to improve the ability of autonomous systems to generate accurate, relevant image descriptions. Our model enhances training efficacy by incorporating the use of category labels, high-level object superclasses, which are derivable using modern object-detection models. We show that this simple augmentation to an existing architecture results in a statistically significant improvement in caption quality.","PeriodicalId":6750,"journal":{"name":"2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"34 1","pages":"1608-1614"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA52953.2021.00257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Despite published accessibility standards many websites remain nan-compliant, containing images lacking accompanying textual descriptions. This leaves visually-impaired individuals unable to fully enjoy the rich wonders of the web. To help address this inequity, our research seeks to improve the ability of autonomous systems to generate accurate, relevant image descriptions. Our model enhances training efficacy by incorporating the use of category labels, high-level object superclasses, which are derivable using modern object-detection models. We show that this simple augmentation to an existing architecture results in a statistically significant improvement in caption quality.
一种融合分层图像信息的增强图像字幕模型
尽管发布了可访问性标准,但许多网站仍然不兼容,包含的图像缺乏相应的文本描述。这使得视障人士无法充分享受网络的丰富奇观。为了帮助解决这种不平等,我们的研究旨在提高自主系统生成准确、相关图像描述的能力。我们的模型通过结合使用类别标签和高级对象超类来提高训练效率,这些超类可以使用现代对象检测模型派生。我们表明,这种对现有架构的简单增强在统计上显著提高了标题质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信