The Einstein-Vlasov system in maximal areal coordinates---Local existence and continuation

IF 1 4区 数学 Q1 MATHEMATICS
S. Günther, G. Rein
{"title":"The Einstein-Vlasov system in maximal areal coordinates---Local existence and continuation","authors":"S. Günther, G. Rein","doi":"10.3934/krm.2021040","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>We consider the spherically symmetric, asymptotically flat Einstein-Vlasov system in maximal areal coordinates. The latter coordinates have been used both in analytical and numerical investigations of the Einstein-Vlasov system [<xref ref-type=\"bibr\" rid=\"b3\">3</xref>,<xref ref-type=\"bibr\" rid=\"b8\">8</xref>,<xref ref-type=\"bibr\" rid=\"b18\">18</xref>,<xref ref-type=\"bibr\" rid=\"b19\">19</xref>], but neither a local existence theorem nor a suitable continuation criterion has so far been established for the corresponding nonlinear system of PDEs. We close this gap. Although the analysis follows lines similar to the corresponding result in Schwarzschild coordinates, essential new difficulties arise from to the much more complicated form which the field equations take, while at the same time it becomes easier to control the necessary, highest order derivatives of the solution. The latter observation may be useful in subsequent investigations.</p>","PeriodicalId":49942,"journal":{"name":"Kinetic and Related Models","volume":"17 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kinetic and Related Models","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/krm.2021040","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

Abstract

We consider the spherically symmetric, asymptotically flat Einstein-Vlasov system in maximal areal coordinates. The latter coordinates have been used both in analytical and numerical investigations of the Einstein-Vlasov system [3,8,18,19], but neither a local existence theorem nor a suitable continuation criterion has so far been established for the corresponding nonlinear system of PDEs. We close this gap. Although the analysis follows lines similar to the corresponding result in Schwarzschild coordinates, essential new difficulties arise from to the much more complicated form which the field equations take, while at the same time it becomes easier to control the necessary, highest order derivatives of the solution. The latter observation may be useful in subsequent investigations.

极大面坐标下的爱因斯坦-弗拉索夫系统——局部存在与延拓
考虑极大面坐标下的球对称渐近平面爱因斯坦-弗拉索夫系统。后一种坐标已用于Einstein-Vlasov系统的解析和数值研究[3,8,18,19],但迄今为止,对于相应的偏微分方程非线性系统,既没有建立局部存在定理,也没有建立合适的延拓判据。我们缩小这个差距。尽管分析遵循与史瓦西坐标中相应结果相似的路线,但由于场方程的形式更为复杂,因此产生了新的困难,同时,控制解的必要的最高阶导数变得更加容易。后一项观察可能对以后的调查有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
36
审稿时长
>12 weeks
期刊介绍: KRM publishes high quality papers of original research in the areas of kinetic equations spanning from mathematical theory to numerical analysis, simulations and modelling. It includes studies on models arising from physics, engineering, finance, biology, human and social sciences, together with their related fields such as fluid models, interacting particle systems and quantum systems. A more detailed indication of its scope is given by the subject interests of the members of the Board of Editors. Invited expository articles are also published from time to time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信