{"title":"Scattering in Si-nanowires — Where does it matter?","authors":"Gerhard Klimeck, Mathieu Luiser","doi":"10.1109/SNW.2010.5562586","DOIUrl":null,"url":null,"abstract":"Electron transport is computed in 3nm Si nanowires subject to incoherent scattering from phonons. The electronic structure of the nanowire is represented in an atomistic sp3d5s* tight binding basis. Phonon modes are computed in an atomistic valence force field rather than a continuum deformation potential. Atomistic transport and incoherent scattering are coupled through the non-equilibrium Green function formalism (NEGF) in our new OMEN simulator. Energy loss due to phonon emission is shown to lead to a resistive potential drop in the emitter of the nanowire. Phonon absorption is shown to increase the current in a band-to-band-tunneling configuration.","PeriodicalId":6433,"journal":{"name":"2010 Silicon Nanoelectronics Workshop","volume":"6 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Silicon Nanoelectronics Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SNW.2010.5562586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Electron transport is computed in 3nm Si nanowires subject to incoherent scattering from phonons. The electronic structure of the nanowire is represented in an atomistic sp3d5s* tight binding basis. Phonon modes are computed in an atomistic valence force field rather than a continuum deformation potential. Atomistic transport and incoherent scattering are coupled through the non-equilibrium Green function formalism (NEGF) in our new OMEN simulator. Energy loss due to phonon emission is shown to lead to a resistive potential drop in the emitter of the nanowire. Phonon absorption is shown to increase the current in a band-to-band-tunneling configuration.