R. Steel, B. Sack, M. Tsuji, M. Navarro, Will Betz, Matthew E. Fishbaugher, E. Flannery, S. Kappe
{"title":"An Opsonic Phagocytosis Assay for Plasmodium falciparum Sporozoites","authors":"R. Steel, B. Sack, M. Tsuji, M. Navarro, Will Betz, Matthew E. Fishbaugher, E. Flannery, S. Kappe","doi":"10.1128/CVI.00445-16","DOIUrl":null,"url":null,"abstract":"ABSTRACT Plasmodium falciparum malaria remains the deadliest parasitic disease worldwide. Vaccines targeting the preerythrocytic sporozoite and liver stages have the potential to entirely prevent blood-stage infection and disease, as well as onward transmission. Sporozoite surface and secreted proteins are leading candidates for inclusion in a preerythrocytic stage-specific, antibody-based vaccine. Preclinical functional assays to identify humoral correlates of protection in vitro and to validate novel sporozoite protein targets for inclusion in multisubunit vaccines currently do not consider the interaction of sporozoite-targeting antibodies with other components of the immune system. Here, we describe the development of a simple flow cytometric assay to quantitatively assess the ability of antibodies directed against P. falciparum sporozoites to facilitate their phagocytosis. We demonstrate that this sporozoite opsonic phagocytosis assay (SOPA) is compatible with both monoclonal antibodies and human immune serum and can be performed using cryopreserved P. falciparum sporozoites. This simple, accessible assay will aid with the assessment of antibody responses to vaccination with Plasmodium antigens and their interaction with phagocytic cells of the immune system.","PeriodicalId":10271,"journal":{"name":"Clinical and Vaccine Immunology","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical and Vaccine Immunology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1128/CVI.00445-16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 15
Abstract
ABSTRACT Plasmodium falciparum malaria remains the deadliest parasitic disease worldwide. Vaccines targeting the preerythrocytic sporozoite and liver stages have the potential to entirely prevent blood-stage infection and disease, as well as onward transmission. Sporozoite surface and secreted proteins are leading candidates for inclusion in a preerythrocytic stage-specific, antibody-based vaccine. Preclinical functional assays to identify humoral correlates of protection in vitro and to validate novel sporozoite protein targets for inclusion in multisubunit vaccines currently do not consider the interaction of sporozoite-targeting antibodies with other components of the immune system. Here, we describe the development of a simple flow cytometric assay to quantitatively assess the ability of antibodies directed against P. falciparum sporozoites to facilitate their phagocytosis. We demonstrate that this sporozoite opsonic phagocytosis assay (SOPA) is compatible with both monoclonal antibodies and human immune serum and can be performed using cryopreserved P. falciparum sporozoites. This simple, accessible assay will aid with the assessment of antibody responses to vaccination with Plasmodium antigens and their interaction with phagocytic cells of the immune system.
期刊介绍:
Cessation. First launched as Clinical and Diagnostic Laboratory Immunology (CDLI) in 1994, CVI published articles that enhanced the understanding of the immune response in health and disease and after vaccination by showcasing discoveries in clinical, laboratory, and vaccine immunology. CVI was committed to advancing all aspects of vaccine research and immunization, including discovery of new vaccine antigens and vaccine design, development and evaluation of vaccines in animal models and in humans, characterization of immune responses and mechanisms of vaccine action, controlled challenge studies to assess vaccine efficacy, study of vaccine vectors, adjuvants, and immunomodulators, immune correlates of protection, and clinical trials.