{"title":"Application of a Numerical Simulation to the Estimation of Wind Loads on Photovoltaic Panels Installed Parallel to Sloped Roofs of Residential Houses","authors":"Y. Uematsu, Tetsuo Yambe, Atsushi Yamamoto","doi":"10.3390/wind2010008","DOIUrl":null,"url":null,"abstract":"Many residential houses with sloped roofs are equipped with photovoltaic (PV) systems. In Japan, PV systems are generally designed based on JIS C 8955, which specifies wind force coefficients for designing PV panels. However, no specification is provided to the PV panels installed near the roof edges where high suctions are induced. When installing PV panels in such high-suction zones, we need to evaluate the wind loads on the PV panels appropriately, usually by performing a wind tunnel experiment. However, it is difficult to make wind tunnel models of PV panels with the same geometric scale as that for the building, e.g., 1/100, because the thickness of PV panels and the distance between PV panels and a roof are both several centimeters. Therefore, in the present paper a numerical simulation is applied to the estimation of pressures in the space between the lower surface of PV panels and the roof surface, called “layer pressures”, using the unsteady Bernoulli equation and the time histories of external pressure coefficients obtained from a wind tunnel experiment. An assumption of the weak compressibility of the air and an adiabatic condition is made for predicting the layer pressures from the flow speed through the gaps. The simulation method is validated by a wind tunnel experiment using a model of square-roof building.","PeriodicalId":51210,"journal":{"name":"Wind and Structures","volume":"5 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wind and Structures","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/wind2010008","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 3
Abstract
Many residential houses with sloped roofs are equipped with photovoltaic (PV) systems. In Japan, PV systems are generally designed based on JIS C 8955, which specifies wind force coefficients for designing PV panels. However, no specification is provided to the PV panels installed near the roof edges where high suctions are induced. When installing PV panels in such high-suction zones, we need to evaluate the wind loads on the PV panels appropriately, usually by performing a wind tunnel experiment. However, it is difficult to make wind tunnel models of PV panels with the same geometric scale as that for the building, e.g., 1/100, because the thickness of PV panels and the distance between PV panels and a roof are both several centimeters. Therefore, in the present paper a numerical simulation is applied to the estimation of pressures in the space between the lower surface of PV panels and the roof surface, called “layer pressures”, using the unsteady Bernoulli equation and the time histories of external pressure coefficients obtained from a wind tunnel experiment. An assumption of the weak compressibility of the air and an adiabatic condition is made for predicting the layer pressures from the flow speed through the gaps. The simulation method is validated by a wind tunnel experiment using a model of square-roof building.
许多倾斜屋顶的住宅都安装了光伏(PV)系统。在日本,光伏系统一般是根据JIS C 8955设计的,该标准规定了设计光伏板的风力系数。然而,没有对安装在屋顶边缘附近的光伏板进行规范,因为那里会产生高吸力。在这种高吸力区域安装光伏板时,我们需要对光伏板的风荷载进行适当的评估,通常是进行风洞试验。然而,由于光伏板的厚度和光伏板与屋顶的距离都是几厘米,因此很难制作出与建筑物相同几何比例的光伏板风洞模型,例如1/100。因此,本文采用非定常伯努利方程和风洞实验得到的外压系数时程,对光伏板下表面与屋顶表面之间的空间压力进行了数值模拟,称为“层压”。在假定空气的弱可压缩性和绝热条件下,根据气流通过间隙的速度来预测层压。采用方屋顶建筑模型进行风洞试验,验证了仿真方法的有效性。
期刊介绍:
The WIND AND STRUCTURES, An International Journal, aims at: - Major publication channel for research in the general area of wind and structural engineering, - Wider distribution at more affordable subscription rates; - Faster reviewing and publication for manuscripts submitted.
The main theme of the Journal is the wind effects on structures. Areas covered by the journal include:
Wind loads and structural response,
Bluff-body aerodynamics,
Computational method,
Wind tunnel modeling,
Local wind environment,
Codes and regulations,
Wind effects on large scale structures.