{"title":"Improving the Robustness of a Direct Visual Odometry Algorithm for Planetary Rovers","authors":"G. Martinez","doi":"10.1109/ICEEE.2018.8534000","DOIUrl":null,"url":null,"abstract":"An algorithm capable of computing the robot position by evaluating measurements of frame to frame intensity differences was extended to be able to detect outliers in the measurements to exclude them from the evaluation to perform the positioning, with the aim of improving its robustness in irregular terrain scenes, such as consisting of flat surfaces with stones on them. The images are taken by a camera firmly attached to the robot, tilted downwards, looking at the planetary surface. A measurement is detected as an outlier only if its intensity difference and linear intensity gradients can not be described by motion compensation. According to the experimental results, this modification reduced the positioning error by a factor of one third in difficult terrain, maintaining its positioning error, which resulted in an average of 1.8%, within a range of 0.15% and 2.5% of distance traveled, similar to those achieved by state of the art algorithms successfully used in robots here on earth and on Mars.","PeriodicalId":6924,"journal":{"name":"2018 15th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)","volume":"2675 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 15th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEEE.2018.8534000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
An algorithm capable of computing the robot position by evaluating measurements of frame to frame intensity differences was extended to be able to detect outliers in the measurements to exclude them from the evaluation to perform the positioning, with the aim of improving its robustness in irregular terrain scenes, such as consisting of flat surfaces with stones on them. The images are taken by a camera firmly attached to the robot, tilted downwards, looking at the planetary surface. A measurement is detected as an outlier only if its intensity difference and linear intensity gradients can not be described by motion compensation. According to the experimental results, this modification reduced the positioning error by a factor of one third in difficult terrain, maintaining its positioning error, which resulted in an average of 1.8%, within a range of 0.15% and 2.5% of distance traveled, similar to those achieved by state of the art algorithms successfully used in robots here on earth and on Mars.