A bound on the pseudospectrum for a class of non-normal Schrödinger operators.

P. Dondl, P. Dorey, F. Rösler
{"title":"A bound on the pseudospectrum for a class of non-normal Schrödinger operators.","authors":"P. Dondl, P. Dorey, F. Rösler","doi":"10.1093/amrx/abw011","DOIUrl":null,"url":null,"abstract":"We are concerned with the non-normal Schrodinger operator H=−Δ+VH=−Δ+V on L2(Rn)L2(Rn) , where V∈W1,∞loc(Rn)V∈Wloc1,∞(Rn) and ReV(x)≥c∣x∣2−dReV(x)≥c∣x∣2−d for some c,d>0c,d>0 . The spectrum of this operator is discrete and its real part is bounded below by −d−d . In general, the e-pseudospectrum of H will have an unbounded component for any e>0e>0 and thus will not approximate the spectrum in a global sense.\r\nBy exploiting the fact that the semigroup e−tHe−tH is immediately compact, we show a complementary result, namely that for every δ>0δ>0 , R>0R>0 there exists an e>0e>0 such that the e-pseudospectrum \r\nσe(H)⊂{z:Rez≥R}∪⋃λ∈σ(H){z:∣∣z−λ∣∣<δ}.σe(H)⊂{z:Rez≥R}∪⋃λ∈σ(H){z:∣z−λ∣<δ}. \r\nIn particular, the unbounded part of the pseudospectrum escapes towards +∞+∞ as e decreases. In addition, we give two examples of non-selfadjoint Schrodinger operators outside of our class and study their pseudospectra in more detail.","PeriodicalId":89656,"journal":{"name":"Applied mathematics research express : AMRX","volume":"12 1","pages":"271-296"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied mathematics research express : AMRX","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/amrx/abw011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We are concerned with the non-normal Schrodinger operator H=−Δ+VH=−Δ+V on L2(Rn)L2(Rn) , where V∈W1,∞loc(Rn)V∈Wloc1,∞(Rn) and ReV(x)≥c∣x∣2−dReV(x)≥c∣x∣2−d for some c,d>0c,d>0 . The spectrum of this operator is discrete and its real part is bounded below by −d−d . In general, the e-pseudospectrum of H will have an unbounded component for any e>0e>0 and thus will not approximate the spectrum in a global sense. By exploiting the fact that the semigroup e−tHe−tH is immediately compact, we show a complementary result, namely that for every δ>0δ>0 , R>0R>0 there exists an e>0e>0 such that the e-pseudospectrum σe(H)⊂{z:Rez≥R}∪⋃λ∈σ(H){z:∣∣z−λ∣∣<δ}.σe(H)⊂{z:Rez≥R}∪⋃λ∈σ(H){z:∣z−λ∣<δ}. In particular, the unbounded part of the pseudospectrum escapes towards +∞+∞ as e decreases. In addition, we give two examples of non-selfadjoint Schrodinger operators outside of our class and study their pseudospectra in more detail.
一类非常规Schrödinger算子的伪谱界。
我们研究L2(Rn)L2(Rn)上的非正规薛定谔算子H= - Δ+VH= - Δ+V,其中V∈W1,∞loc(Rn)V∈Wloc1,∞(Rn)且ReV(x)≥c∣x∣2 - dReV(x)≥c∣x∣2 - d,对于某些c,d>0c,d>0。这个算子的谱是离散的,它的实部以- d - d为界。一般来说,对于任何e>0e>0, H的e-伪谱将具有无界分量,因此不会在全局意义上近似谱。利用半群e−the−tH是紧致的这一事实,我们给出了一个互补的结果,即对于每一个δ>0δ>0, R>0R>0,存在一个e>0e>0使得e-伪谱σe(H)∧z:Rez≥R}∪λ∈σ(H){z:∣z−λ∣<δ}。σe(H)∧z:Rez≥R}∪λ∈R (H){z:∣z−λ∣<δ}∪λ∈R (H){z:∣z−λ∣<δ}。特别是,随着e的减小,伪谱的无界部分向+∞+∞逃逸。此外,我们给出了两个非自伴随薛定谔算子的例子,并详细研究了它们的伪谱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信