Inhomogeneously polarized light fields: polarization singularity indices derived by analogy with the topological charge

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
V. Kotlyar, A. Kovalev, V. Zaitsev
{"title":"Inhomogeneously polarized light fields: polarization singularity indices derived by analogy with the topological charge","authors":"V. Kotlyar, A. Kovalev, V. Zaitsev","doi":"10.18287/2412-6179-co-1126","DOIUrl":null,"url":null,"abstract":"In this work, we study several different vector and hybrid light fields, including those with multiple polarization singularities. We derive polarization singularity indices by adopting a well-known M.V. Berry's formula, which is commonly used to obtain the topological charge of scalar vortex light fields. It is shown that fields whose polarization state depends only on the polar angle in the beam cross section can have either polarization singularity lines outgoing from the center, or a single polarization singularity in the center of the beam cross section. If the polarization state of the field depends only on the radial variable, then such fields have no polarization singularities and their index is equal to zero. If the polarization state of a vector field depends on both polar coordinates, then such a field can have several polarization singularities at different locations in the beam cross section. We also investigate a vector field with high-order radial polarization and with a real parameter. At different values of this parameter, such a field has either several polarization singularity lines outgoing from the center, or a single singular point in the center. The polarization singularity index of such a field for different parameters can be either half-integer, or integer, or zero.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18287/2412-6179-co-1126","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

In this work, we study several different vector and hybrid light fields, including those with multiple polarization singularities. We derive polarization singularity indices by adopting a well-known M.V. Berry's formula, which is commonly used to obtain the topological charge of scalar vortex light fields. It is shown that fields whose polarization state depends only on the polar angle in the beam cross section can have either polarization singularity lines outgoing from the center, or a single polarization singularity in the center of the beam cross section. If the polarization state of the field depends only on the radial variable, then such fields have no polarization singularities and their index is equal to zero. If the polarization state of a vector field depends on both polar coordinates, then such a field can have several polarization singularities at different locations in the beam cross section. We also investigate a vector field with high-order radial polarization and with a real parameter. At different values of this parameter, such a field has either several polarization singularity lines outgoing from the center, or a single singular point in the center. The polarization singularity index of such a field for different parameters can be either half-integer, or integer, or zero.
非均匀偏振光场:由拓扑电荷类比导出的偏振奇异指数
在这项工作中,我们研究了几种不同的矢量光场和混合光场,包括具有多个偏振奇点的光场。我们采用著名的M.V. Berry公式推导偏振奇异指数,该公式通常用于计算标量涡旋光场的拓扑电荷。结果表明,偏振态只与光束截面的极角有关的场,既可以有中心出射的偏振奇点线,也可以在光束截面的中心有一个单一的偏振奇点。如果场的偏振态只依赖于径向变量,则这样的场不存在偏振奇点,其折射率为零。如果一个矢量场的偏振态依赖于两个极坐标,那么这个矢量场在光束截面的不同位置可以有多个偏振奇点。我们还研究了具有高阶径向偏振和实参数的矢量场。在该参数的不同取值下,这样的场要么有几条从中心发出的极化奇异线,要么在中心有一个奇异点。在不同参数下,该场的极化奇异指数可以是半整数、整数或零。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信