Strong uniform consistency with rates for kernel density estimators with general kernels on manifolds

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Hau‐Tieng Wu, Nan Wu
{"title":"Strong uniform consistency with rates for kernel density estimators with general kernels on manifolds","authors":"Hau‐Tieng Wu, Nan Wu","doi":"10.1093/IMAIAI/IAAB014","DOIUrl":null,"url":null,"abstract":"\n When analyzing modern machine learning algorithms, we may need to handle kernel density estimation (KDE) with intricate kernels that are not designed by the user and might even be irregular and asymmetric. To handle this emerging challenge, we provide a strong uniform consistency result with the $L^\\infty $ convergence rate for KDE on Riemannian manifolds with Riemann integrable kernels (in the ambient Euclidean space). We also provide an $L^1$ consistency result for kernel density estimation on Riemannian manifolds with Lebesgue integrable kernels. The isotropic kernels considered in this paper are different from the kernels in the Vapnik–Chervonenkis class that are frequently considered in statistics society. We illustrate the difference when we apply them to estimate the probability density function. Moreover, we elaborate the delicate difference when the kernel is designed on the intrinsic manifold and on the ambient Euclidian space, both might be encountered in practice. At last, we prove the necessary and sufficient condition for an isotropic kernel to be Riemann integrable on a submanifold in the Euclidean space.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/IMAIAI/IAAB014","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 6

Abstract

When analyzing modern machine learning algorithms, we may need to handle kernel density estimation (KDE) with intricate kernels that are not designed by the user and might even be irregular and asymmetric. To handle this emerging challenge, we provide a strong uniform consistency result with the $L^\infty $ convergence rate for KDE on Riemannian manifolds with Riemann integrable kernels (in the ambient Euclidean space). We also provide an $L^1$ consistency result for kernel density estimation on Riemannian manifolds with Lebesgue integrable kernels. The isotropic kernels considered in this paper are different from the kernels in the Vapnik–Chervonenkis class that are frequently considered in statistics society. We illustrate the difference when we apply them to estimate the probability density function. Moreover, we elaborate the delicate difference when the kernel is designed on the intrinsic manifold and on the ambient Euclidian space, both might be encountered in practice. At last, we prove the necessary and sufficient condition for an isotropic kernel to be Riemann integrable on a submanifold in the Euclidean space.
流形上具有一般核的核密度估计与率的强一致相合
在分析现代机器学习算法时,我们可能需要处理复杂的内核密度估计(KDE),这些内核不是由用户设计的,甚至可能是不规则和不对称的。为了应对这个新出现的挑战,我们提供了一个强大的一致一致性结果,即在具有黎曼可积核的黎曼流形上(在环境欧几里德空间中)KDE的$L^\infty $收敛率。我们还提供了具有Lebesgue可积核的黎曼流形核密度估计的$L^1$一致性结果。本文考虑的各向同性核不同于统计学界经常考虑的Vapnik-Chervonenkis类核。当我们应用它们来估计概率密度函数时,我们说明了它们的区别。此外,我们还详细阐述了核在本然流形和周围欧几里德空间上设计时的微妙区别,这两种设计在实际中都可能遇到。最后,我们证明了欧几里德空间中各向同性核在子流形上是黎曼可积的充要条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信