Mildly version of Hurewicz basis covering property and Hurewicz measure zero spaces

Pub Date : 2022-02-25 DOI:10.36045/j.bbms.210114a
M. Bhardwaj, A. Osipov
{"title":"Mildly version of Hurewicz basis covering property and Hurewicz measure zero spaces","authors":"M. Bhardwaj, A. Osipov","doi":"10.36045/j.bbms.210114a","DOIUrl":null,"url":null,"abstract":"In this paper, we introduced the mildly version of the Hurewicz basis covering property, studied by Babinkostova, Ko\\v{c}inac, and Scheepers. A space $X$ is said to have mildly-Hurewicz property if for each sequence $\\langle \\mathcal{U}_n : n\\in \\omega \\rangle$ of clopen covers of $X$ there is a sequence $\\langle \\mathcal{V}_n : n\\in \\omega \\rangle$ such that for each $n$, $\\mathcal{V}_n$ is a finite subset of $\\mathcal{U}_n$ and for each $x\\in X$, $x$ belongs to $\\bigcup\\mathcal{V}_n$ for all but finitely many $n$. Then we characterized mildly-Hurewicz property by mildly-Hurewicz Basis property and mildly-Hurewicz measure zero property for metrizable spaces.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.36045/j.bbms.210114a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we introduced the mildly version of the Hurewicz basis covering property, studied by Babinkostova, Ko\v{c}inac, and Scheepers. A space $X$ is said to have mildly-Hurewicz property if for each sequence $\langle \mathcal{U}_n : n\in \omega \rangle$ of clopen covers of $X$ there is a sequence $\langle \mathcal{V}_n : n\in \omega \rangle$ such that for each $n$, $\mathcal{V}_n$ is a finite subset of $\mathcal{U}_n$ and for each $x\in X$, $x$ belongs to $\bigcup\mathcal{V}_n$ for all but finitely many $n$. Then we characterized mildly-Hurewicz property by mildly-Hurewicz Basis property and mildly-Hurewicz measure zero property for metrizable spaces.
分享
查看原文
温和版本的Hurewicz基涵盖性质和Hurewicz测度零空间
本文介绍了Babinkostova、Ko等研究的Hurewicz基覆盖性质的温和版本\v{c}伊纳克和舍普斯。一个空间 $X$ 对于每一个序列都有轻微的hurewicz性质 $\langle \mathcal{U}_n : n\in \omega \rangle$ 的打开的盖子的 $X$ 这是一个序列 $\langle \mathcal{V}_n : n\in \omega \rangle$ 这样对于每一个 $n$, $\mathcal{V}_n$ 的有限子集是 $\mathcal{U}_n$ 对于每一个 $x\in X$, $x$ 属于 $\bigcup\mathcal{V}_n$ 除了有限的一部分 $n$. 然后利用可度量空间的温和- hurewicz基性质和温和- hurewicz测度零性质来表征温和- hurewicz性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信