{"title":"The importance of context in extreme value analysis with application to extreme temperatures in the USA and Greenland","authors":"D. Clarkson, E. Eastoe, A. Leeson","doi":"10.1093/jrsssc/qlad020","DOIUrl":null,"url":null,"abstract":"\n Statistical extreme value models allow estimation of the frequency, magnitude and spatio-temporal extent of extreme temperature events in the presence of climate change. Unfortunately, the assumptions of many standard methods are not valid for complex environmental data sets, with a realistic statistical model requiring appropriate incorporation of scientific context. We examine two case studies in which the application of routine extreme value methods result in inappropriate models and inaccurate predictions. In the first scenario, record-breaking temperatures experienced in the US in the summer of 2021 are found to exceed the maximum feasible temperature predicted from a standard extreme value analysis of pre-2021 data. Incorporating random effects into the standard methods accounts for additional variability in the model parameters, reflecting shifts in unobserved climatic drivers and permitting greater accuracy in return period prediction. The second scenario examines ice surface temperatures in Greenland. The temperature distribution is found to have a poorly-defined upper tail, with a spike in observations just below 0◦C and an unexpectedly large number of measurements above this value. A Gaussian mixture model fit to the full range of measurements improves fit and predictive abilities in the upper tail when compared to traditional extreme value methods.","PeriodicalId":49981,"journal":{"name":"Journal of the Royal Statistical Society Series C-Applied Statistics","volume":"32 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Royal Statistical Society Series C-Applied Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/jrsssc/qlad020","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1
Abstract
Statistical extreme value models allow estimation of the frequency, magnitude and spatio-temporal extent of extreme temperature events in the presence of climate change. Unfortunately, the assumptions of many standard methods are not valid for complex environmental data sets, with a realistic statistical model requiring appropriate incorporation of scientific context. We examine two case studies in which the application of routine extreme value methods result in inappropriate models and inaccurate predictions. In the first scenario, record-breaking temperatures experienced in the US in the summer of 2021 are found to exceed the maximum feasible temperature predicted from a standard extreme value analysis of pre-2021 data. Incorporating random effects into the standard methods accounts for additional variability in the model parameters, reflecting shifts in unobserved climatic drivers and permitting greater accuracy in return period prediction. The second scenario examines ice surface temperatures in Greenland. The temperature distribution is found to have a poorly-defined upper tail, with a spike in observations just below 0◦C and an unexpectedly large number of measurements above this value. A Gaussian mixture model fit to the full range of measurements improves fit and predictive abilities in the upper tail when compared to traditional extreme value methods.
期刊介绍:
The Journal of the Royal Statistical Society, Series C (Applied Statistics) is a journal of international repute for statisticians both inside and outside the academic world. The journal is concerned with papers which deal with novel solutions to real life statistical problems by adapting or developing methodology, or by demonstrating the proper application of new or existing statistical methods to them. At their heart therefore the papers in the journal are motivated by examples and statistical data of all kinds. The subject-matter covers the whole range of inter-disciplinary fields, e.g. applications in agriculture, genetics, industry, medicine and the physical sciences, and papers on design issues (e.g. in relation to experiments, surveys or observational studies).
A deep understanding of statistical methodology is not necessary to appreciate the content. Although papers describing developments in statistical computing driven by practical examples are within its scope, the journal is not concerned with simply numerical illustrations or simulation studies. The emphasis of Series C is on case-studies of statistical analyses in practice.