The importance of context in extreme value analysis with application to extreme temperatures in the USA and Greenland

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
D. Clarkson, E. Eastoe, A. Leeson
{"title":"The importance of context in extreme value analysis with application to extreme temperatures in the USA and Greenland","authors":"D. Clarkson, E. Eastoe, A. Leeson","doi":"10.1093/jrsssc/qlad020","DOIUrl":null,"url":null,"abstract":"\n Statistical extreme value models allow estimation of the frequency, magnitude and spatio-temporal extent of extreme temperature events in the presence of climate change. Unfortunately, the assumptions of many standard methods are not valid for complex environmental data sets, with a realistic statistical model requiring appropriate incorporation of scientific context. We examine two case studies in which the application of routine extreme value methods result in inappropriate models and inaccurate predictions. In the first scenario, record-breaking temperatures experienced in the US in the summer of 2021 are found to exceed the maximum feasible temperature predicted from a standard extreme value analysis of pre-2021 data. Incorporating random effects into the standard methods accounts for additional variability in the model parameters, reflecting shifts in unobserved climatic drivers and permitting greater accuracy in return period prediction. The second scenario examines ice surface temperatures in Greenland. The temperature distribution is found to have a poorly-defined upper tail, with a spike in observations just below 0◦C and an unexpectedly large number of measurements above this value. A Gaussian mixture model fit to the full range of measurements improves fit and predictive abilities in the upper tail when compared to traditional extreme value methods.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/jrsssc/qlad020","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

Statistical extreme value models allow estimation of the frequency, magnitude and spatio-temporal extent of extreme temperature events in the presence of climate change. Unfortunately, the assumptions of many standard methods are not valid for complex environmental data sets, with a realistic statistical model requiring appropriate incorporation of scientific context. We examine two case studies in which the application of routine extreme value methods result in inappropriate models and inaccurate predictions. In the first scenario, record-breaking temperatures experienced in the US in the summer of 2021 are found to exceed the maximum feasible temperature predicted from a standard extreme value analysis of pre-2021 data. Incorporating random effects into the standard methods accounts for additional variability in the model parameters, reflecting shifts in unobserved climatic drivers and permitting greater accuracy in return period prediction. The second scenario examines ice surface temperatures in Greenland. The temperature distribution is found to have a poorly-defined upper tail, with a spike in observations just below 0◦C and an unexpectedly large number of measurements above this value. A Gaussian mixture model fit to the full range of measurements improves fit and predictive abilities in the upper tail when compared to traditional extreme value methods.
语境在极端值分析中的重要性,并应用于美国和格陵兰岛的极端温度
统计极值模式可以在气候变化的情况下估计极端温度事件的频率、大小和时空范围。不幸的是,许多标准方法的假设对于复杂的环境数据集是无效的,一个现实的统计模型需要适当地结合科学背景。我们研究了两个案例研究,其中应用常规极值方法导致不适当的模型和不准确的预测。在第一种情况下,2021年夏季美国经历的破纪录温度被发现超过了根据2021年前数据的标准极值分析预测的最高可行温度。将随机效应纳入标准方法可以解释模式参数的额外变率,反映未观测到的气候驱动因素的变化,并使回归期预测更加准确。第二种情景考察的是格陵兰岛的冰层表面温度。温度分布被发现有一个不明确的上尾,在0℃以下的观察中有一个尖峰,在这个值以上的测量出乎意料地多。与传统的极值方法相比,高斯混合模型对整个测量范围的拟合提高了上尾的拟合和预测能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信