Some (p, q)-analogues of Apostol type numbers and polynomials

IF 0.3 Q4 MATHEMATICS
M. Acikgoz, S. Araci, U. Duran
{"title":"Some (p, q)-analogues of Apostol type numbers and polynomials","authors":"M. Acikgoz, S. Araci, U. Duran","doi":"10.12697/ACUTM.2019.23.04","DOIUrl":null,"url":null,"abstract":"We consider a new class of generating functions of the generalizations of Bernoulli and Euler polynomials in terms of (p, q)-integers. By making use of these generating functions, we derive (p, q)-generalizations of several old and new identities concerning Apostol–Bernoulli and Apostol–Euler polynomials. Finally, we define the (p, q)-generalization of Stirling polynomials of the second kind of order v, and provide a link between the (p, q)-generalization of Bernoulli polynomials of order v and the (p, q)-generalization of Stirling polynomials of the second kind of order v.","PeriodicalId":42426,"journal":{"name":"Acta et Commentationes Universitatis Tartuensis de Mathematica","volume":"9 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2019-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta et Commentationes Universitatis Tartuensis de Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12697/ACUTM.2019.23.04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

We consider a new class of generating functions of the generalizations of Bernoulli and Euler polynomials in terms of (p, q)-integers. By making use of these generating functions, we derive (p, q)-generalizations of several old and new identities concerning Apostol–Bernoulli and Apostol–Euler polynomials. Finally, we define the (p, q)-generalization of Stirling polynomials of the second kind of order v, and provide a link between the (p, q)-generalization of Bernoulli polynomials of order v and the (p, q)-generalization of Stirling polynomials of the second kind of order v.
Apostol型数和多项式的一些(p, q)-类似物
我们考虑了一类新的关于(p, q)-整数的伯努利多项式和欧拉多项式的推广生成函数。利用这些生成函数,我们得到了关于阿波斯托尔-伯努利多项式和阿波斯托尔-欧拉多项式的几个新旧恒等式的(p, q)-推广。最后,我们定义了第二类v阶Stirling多项式的(p, q)概化,并给出了v阶Bernoulli多项式的(p, q)概化与第二类v阶Stirling多项式的(p, q)概化之间的联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
33.30%
发文量
11
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信