Lower bounds for Orlicz eigenvalues

A. Salort
{"title":"Lower bounds for Orlicz eigenvalues","authors":"A. Salort","doi":"10.3934/dcds.2021158","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>In this article we consider the following weighted nonlinear eigenvalue problem for the <inline-formula><tex-math id=\"M1\">\\begin{document}$ g- $\\end{document}</tex-math></inline-formula>Laplacian</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id=\"FE1\"> \\begin{document}$ -{\\text{ div}}\\left( g(|\\nabla u|)\\frac{\\nabla u}{|\\nabla u|}\\right) = \\lambda w(x) h(|u|)\\frac{u}{|u|} \\quad \\text{ in }\\Omega\\subset \\mathbb R^n, n\\geq 1 $\\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>with Dirichlet boundary conditions. Here <inline-formula><tex-math id=\"M2\">\\begin{document}$ w $\\end{document}</tex-math></inline-formula> is a suitable weight and <inline-formula><tex-math id=\"M3\">\\begin{document}$ g = G' $\\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\"M4\">\\begin{document}$ h = H' $\\end{document}</tex-math></inline-formula> are appropriated Young functions satisfying the so called <inline-formula><tex-math id=\"M5\">\\begin{document}$ \\Delta' $\\end{document}</tex-math></inline-formula> condition, which includes for instance logarithmic perturbation of powers and different power behaviors near zero and infinity. We prove several properties on its spectrum, being our main goal to obtain lower bounds of eigenvalues in terms of <inline-formula><tex-math id=\"M6\">\\begin{document}$ G $\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M7\">\\begin{document}$ H $\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M8\">\\begin{document}$ w $\\end{document}</tex-math></inline-formula> and the normalization <inline-formula><tex-math id=\"M9\">\\begin{document}$ \\mu $\\end{document}</tex-math></inline-formula> of the corresponding eigenfunctions.</p><p style='text-indent:20px;'>We introduce some new strategies to obtain results that generalize several inequalities from the literature of <inline-formula><tex-math id=\"M10\">\\begin{document}$ p- $\\end{document}</tex-math></inline-formula>Laplacian type eigenvalues.</p>","PeriodicalId":11254,"journal":{"name":"Discrete & Continuous Dynamical Systems - S","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete & Continuous Dynamical Systems - S","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/dcds.2021158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this article we consider the following weighted nonlinear eigenvalue problem for the \begin{document}$ g- $\end{document}Laplacian

with Dirichlet boundary conditions. Here \begin{document}$ w $\end{document} is a suitable weight and \begin{document}$ g = G' $\end{document} and \begin{document}$ h = H' $\end{document} are appropriated Young functions satisfying the so called \begin{document}$ \Delta' $\end{document} condition, which includes for instance logarithmic perturbation of powers and different power behaviors near zero and infinity. We prove several properties on its spectrum, being our main goal to obtain lower bounds of eigenvalues in terms of \begin{document}$ G $\end{document}, \begin{document}$ H $\end{document}, \begin{document}$ w $\end{document} and the normalization \begin{document}$ \mu $\end{document} of the corresponding eigenfunctions.

We introduce some new strategies to obtain results that generalize several inequalities from the literature of \begin{document}$ p- $\end{document}Laplacian type eigenvalues.

Orlicz特征值的下界
In this article we consider the following weighted nonlinear eigenvalue problem for the \begin{document}$ g- $\end{document}Laplacian \begin{document}$ -{\text{ div}}\left( g(|\nabla u|)\frac{\nabla u}{|\nabla u|}\right) = \lambda w(x) h(|u|)\frac{u}{|u|} \quad \text{ in }\Omega\subset \mathbb R^n, n\geq 1 $\end{document} with Dirichlet boundary conditions. Here \begin{document}$ w $\end{document} is a suitable weight and \begin{document}$ g = G' $\end{document} and \begin{document}$ h = H' $\end{document} are appropriated Young functions satisfying the so called \begin{document}$ \Delta' $\end{document} condition, which includes for instance logarithmic perturbation of powers and different power behaviors near zero and infinity. We prove several properties on its spectrum, being our main goal to obtain lower bounds of eigenvalues in terms of \begin{document}$ G $\end{document}, \begin{document}$ H $\end{document}, \begin{document}$ w $\end{document} and the normalization \begin{document}$ \mu $\end{document} of the corresponding eigenfunctions.We introduce some new strategies to obtain results that generalize several inequalities from the literature of \begin{document}$ p- $\end{document}Laplacian type eigenvalues.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信